

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

© Copyright 2005-2006, Technosoftware AG – www.technosoftw

OPC
Framework .NET
Developer Guide Part I

• General Information

• OPC DA

• OPC XML-DA

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06

are.com
Page 1 of 81

Technosoftware AG

Farmweg 4

CH-5702 Niederlenz, AG

Phone: +41 62 888 40 40

Fax: +41 62 888 40 45

sales@technosoftware.com

www.technosoftware.com

mailto:sales@technosoftware.com
http://www.technosoftware.com/

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 2 of 81

Document Control
Version Author Date Comment

1.0 TJ 21-11-2006 Initial version of Part I

Purpose and audience of document
Microsoft’s .NET Framework is an application development environment that supports multiple languages and
provides a large set of standard programming APIs. This document defines an Application Programming Inter-
face (API) for OPC based on the .NET programming model.

The main reason for this API is to provide interoperability between existing OPC specifications and applications
developed in the .NET environment. The API does support COM based (OPC Data Access, OPC Alarms&Events,
OPC Historical Data Access) and SOAP/XML based (OPC XML-DA) servers via the same set of interfaces.

This document is intended as reference material for developers of OPC compliant Client and server applications.
It is assumed that the reader is familiar with the various OPC specifications, Microsoft COM/DCOM technology,
XML Schemas, Microsoft’s .NET Framework and the needs of the Process Control industry.

Summary
This document gives a short overview of the functionality of the OPC Framework .NET. The goal of this document
is to give an introduction and can be used as base for your own implementations.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 3 of 81

Disclaimer
© Technosoftware AG. All rights reserved. No part of this document may be altered, reproduced or distributed in
any form without the expressed written permission of Technosoftware AG.

This document was created strictly for information purposes. No guarantee, contractual specification or condi-
tion shall be derived from this document unless agreed to in writing. Technosoftware AG reserves the right to
make changes in the products and services described in this document at any time without notice and this
document does not represent a commitment on the part of Technosoftware AG in the future.

While Technosoftware AG uses reasonable efforts to ensure that the information and materials contained in this
document are current and accurate, Technosoftware AG makes no representations or warranties as to the accu-
racy, reliability or completeness of the information, text, graphics, or other items contained in the document.
Technosoftware AG expressly disclaims liability for any errors or omissions in the materials contained in the
document and would welcome feedback as to any possible errors or inaccuracies contained herein.

Technosoftware AG shall not be liable for any special, indirect, incidental, or consequential damages, including
without limitation, lost revenues or lost profits, which may result from the use of these materials. All offers are
non-binding and without obligation unless agreed to in writing.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 4 of 81

TABLE OF CONTENTS

1 Introduction...7
1.1 Why OPC? ...7
1.2 What is OPC? ..8

1.2.1 OPC Common V1.0 ...8
1.2.2 OPC Data Access V1.0a, V2.05 and V3.08
1.2.3 OPC Alarms&Events V1.1 ..8
1.2.4 OPC Historical Data Access V1.1 ...8
1.2.5 OPC Batch V2.0...8
1.2.6 OPC Security V1.0...8
1.2.7 OPC Data eXchange V1.0 ..8
1.2.8 OPC XML-DA V1.0 ..8

1.3 What is COM? ...8
1.4 What is OLE?...9
1.5 What is DCOM? ...9
1.6 What is ActiveX? ...9
1.7 What are Web Services?...9
1.8 OPC Specifications..9

1.8.1 Data Access (DA) ..9
1.8.2 Alarms&Events (AE)...9
1.8.3 Historical Data Access (HDA)...11
1.8.4 Batch (BA) ...11
1.8.5 Security (SEC)..12
1.8.6 Data eXchange (DX) ..12
1.8.7 XML-DA..13

2 Framework Concepts ...14
2.1 APIs..14
2.2 Naming Conventions ..15
2.3 Requirements ...16

2.3.1 Run-time Requirements..16
2.3.1.1 Install the .NET Framework 16
2.3.1.2 OPC Core Components 16
2.3.1.3 OPC Framework .NET Components 16
2.3.1.4 OPC Framework .NET Core Components 17

2.3.2 Development Requirements ..17
2.4 Server Identification..18
2.5 Server Browsing..19
2.6 Server Connections...20

2.6.1 General...20
2.6.2 Security ..21
2.6.3 HTTP Proxy...21

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 5 of 81

2.6.4 Error Handling ..22
2.6.4.1 TsOpcResult 22
2.6.4.2 Exceptions 22

2.6.5 Garbage Collection ...22
2.6.6 Item Identifiers ...23

2.7 Server API...24
2.7.1 Interfaces ...24

2.7.1.1 ITsOpcServer Interface 24
2.7.2 Classes ...27

2.7.2.1 TsOpcItem Class 27
2.8 Client API ...28

2.8.1 Structures...28
2.8.1.1 TsOpcSpecification Structure 28

2.8.2 Classes ...29
2.8.2.1 TsOpcComputerInfo Class 29
2.8.2.2 TsOpcServerInfo Class 29
2.8.2.3 TsOpcBrowse Class 30
2.8.2.4 TsOpcServer Class 34

3 OPC DA/XML-DA Client Development ..38
3.1 Server API...38

3.1.1 Enumerations ...38
3.1.1.1 TsCDaBrowseFilter enumeration 38
3.1.1.2 TsCDaResultFilter enumeration 38
3.1.1.3 TsCDaServerState enumeration 39
3.1.1.4 TsCDaStateMask enumeration 39
3.1.1.5 TsDaAccessRights enumeration 40
3.1.1.6 TsDaEuType enumeration 40
3.1.1.7 TsDaLimitBits enumeration 41
3.1.1.8 TsDaQualityBits enumeration 41
3.1.1.9 TsDaQualityMasks enumeration 42

3.1.2 Structures...43
3.1.2.1 TsCDaPropertyID Structure 43
3.1.2.2 TsCDaQuality Structure 43

3.1.3 Interfaces ...44
3.1.3.1 ITsDaServer Interface 44
3.1.3.2 ITsCDaSubscription Interface 49

3.1.4 Classes ...56
3.1.4.1 TsCDaItem class 56
3.1.4.2 TsCDaItemValue class 59
3.1.4.3 TsCDaBrowseElement class 60
3.1.4.4 TsCDaBrowseFilters class 60
3.1.4.5 TsCDaBrowsePosition class 61
3.1.4.6 TsCDaItemProperty class 62
3.1.4.7 TsCDaServerStatus class 63

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 6 of 81

3.1.4.8 TsCDaSubscriptionState class 64
3.2 Client API ...67

3.2.1 Classes ...67
3.2.1.1 TsCDaServer class 67
3.2.1.2 TsCDaSubscription Class 74

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06
© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

Page 7 of 81

1 Introduction
Over the last seven years OPC has become the de facto standard for open communication between SCADA sys-
tems and field devices.

The first versions of the OPC standards are based on the DCOM architecture defined by Microsoft. These stan-
dards are limited to Microsoft Windows based operating systems because of the use of the DCOM architecture.
Only a few implementations based on other operating systems exist, like Technosoftware AG solutions.

With the .NET initiative, Microsoft is now promoting another distributed architecture beside DCOM: the web ser-
vices environment based on XML and W3C protocols. In a similar move, OPC is also specifying XML based com-
munication.

The OPC Foundation also announced the move to a “unified architecture” that will now be totally interoperable
with full internet connectivity and unlimited scalability across platforms of the end-users choice.

Most of the upcoming implementations are based on Microsoft Windows and the .NET architecture. At least for
servers based on the new specifications this results in large and complex environments required by Microsoft
OSs to run web services (.NET framework and IIS web server). But also for clients the .NET framework is still re-
quired. Implementing OPC clients or servers for these new specifications is complex if the target operating sys-
tem is not Microsoft based, e.g. Linux.

1.1 Why OPC?
In the automation industry very often
devices from different hardware suppli-
ers and software packages like visuali-
zation systems and process-control
software from several software suppli-
ers have to be combined to build a
complete system. Within this system the
different software components need to
communicate. The application software
should communicate with I/O devices as
well as other applications. Getting the
different software modules to work
together is the biggest problem for
process systems manufacturers.

Ethernet

PCs with Win95 or NT Workstations with NT
Minis with

OLE/COM Gateways
Mainframes with

OLE/COM Gateways

OPC Data Server (NT)
Device 1

Device 2

OPC Data Server (NT)

Device 3

OPC Data Server (NT)

Device 4

MMI
Custom VB Apps

SCADA
Custom VB Apps

SCADA
Custom Apps

Production Control
Custom Apps

These problems are due to missing or
incompatible standards for data ex-
change interfaces. In the past vendors
developed proprietary hardware and
software solutions. All process-control
and information systems today have their own interface to access the information.

Often a driver for one I/O device was written several times by different vendors. This can cause inconsistencies
among different custom drivers or upgrades. It may also be impossible to use different software packages with
one device at the same time because they use independent drivers and hardware features that are not supported
by a custom driver.

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 8 of 81

In the past hardware vendors tried to solve some of these problems by delivering their own drivers.

The solution today is having a standard plug-and-play software technology for process-control and automation.
Having such a standard makes it possible that different software packages can freely connect and communicate
with different devices. This results in a truly open and easy enterprise-wide communication between systems
and devices on the field, process or business management hierarchy.

1.2 What is OPC?
OPC is open connectivity in industrial automation and the enterprise systems that support industry. Interopera-
bility is assured through the creation and maintenance of open standards specifications. There are currently
seven standards specifications completed.

Currently the following specifications are available:

1.2.1 OPC Common V1.0
This specification contains common rules and design criteria and the specification of interfaces which are com-
mon for several other specifications, e.g., for Data Access, Alarm&Event Handling or Historical Data Access.

1.2.2 OPC Data Access V1.0a, V2.05 and V3.0
This specification is used to move real-time data from PLCs, DCSs, and other control devices to HMIs and other
display clients.

1.2.3 OPC Alarms&Events V1.1
This specification provides alarm and event notifications on demand (in contrast to the continuous data flow of
Data Access). These include process alarms, operator actions, informational messages, and tracking/auditing
messages.

1.2.4 OPC Historical Data Access V1.1
Where OPC Data Access provides access to real-time, continually changing data, OPC Historical Data Access
provides access to data already stored. From a simple serial data logging system to a complex SCADA system,
historical archives can be retrieved in a uniform manner.

1.2.5 OPC Batch V2.0
This specification carries the OPC philosophy to the specialized needs of batch processes. It provides interfaces
for the exchange of equipment capabilities (corresponding to the S88.01 Physical Model) and current operating
conditions.

1.2.6 OPC Security V1.0
All the OPC servers provide information that is valuable to the enterprise and if improperly updated, could have
significant consequences to plant processes. OPC Security specifies how to control client access to these servers
in order to protect this sensitive information and to guard against unauthorized modification of process pa-
rameters.

1.2.7 OPC Data eXchange V1.0
This specification takes us from client/server to server-to-server with communication across Ethernet fieldbus
networks. This provides multi-vendor interoperability! And, oh by the way, adds remote configuration, diagnos-
tic and monitoring/management services.

1.2.8 OPC XML-DA V1.0
Provides flexible, consistent rules and formats for exposing plant floor data using XML, leveraging the work
done by Microsoft and others on SOAP and Web Services.

1.3 What is COM?
The ‘Component Object Model’ provides interfaces and inter-component communication. Through COM, an
application may use features of any other application object. COM is the core of DCOM, ActiveX and OLE.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 9 of 81

1.4 What is OLE?
Object Linking and Embedding is used to provide integration among applications and allows the development of
reusable objects that are interoperable between multiple applications. It also provides reusable, component-
based software solutions, where as the software-components can be written in any language.

1.5 What is DCOM?
The Distributed Component Object Model extends COM to work over a network. It is a protocol where remote
components appear to be local.

1.6 What is ActiveX?
ActiveX is an open, integrated platform for portable applications and interactive content for the World Wide Web.

1.7 What are Web Services?
The web services framework is today the de facto standard for open, platform and language independent
communication in IT systems. The main IT companies (SUN, IBM, Microsoft…) integrate it into their products.

1.8 OPC Specifications

1.8.1 Data Access (DA)
An OPC DA Server allows OPC DA Clients to retrieve information about several objects: the server, the group and
the items.

• The OPC server object maintains information about the server and acts as a container for OPC group
objects.

• The OPC group object maintains information about itself and provides the mechanism for containing
and logically organizing OPC items.

• The OPC items represent connections to data sources within the server.

The OPC DA Specification defines two read/write interfaces:

• Synchronous
The client can perform a synchronous read from cache (simple and reasonably efficient). This may be
appropriate for fairly simple clients that are reading relatively small amounts of data.

• Asynchronous
The client can ‘subscribe’ to cached data using IAdviseSink or IOPCDataCallback which is more complex
but very efficient. Asynchronous access is recommended because it minimizes the use of CPU and NET-
WORK resources.

In all cases the OPC DA Server gives the client access to current values of the OPC items. The OPC DA Server only
holds current information in cache. Old information is overwritten. As a result of this it cannot be guaranteed
that an OPC DA Client retrieves all changes in values (also not in asynchronous mode).

For such cases there exist two more OPC specifications, the OPC Alarms&Events and the OPC Historical Data
Access Specification.

1.8.2 Alarms&Events (AE)
The OPC AE interface provides a mechanism for OPC AE clients to be notified when a specified event and/or
alarm condition occurs. The browser interface also allows OPC AE clients to determine the list of events and
conditions supported by an OPC AE Server as well as to get their current status.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 10 of 81

Within OPC, an alarm is an abnormal condition and is thus a special case of a condition. A condition is a named
state of the OPC Event Server or of one of its contained objects that is of interest to an OPC AE client. For exam-
ple, the tag Temperature may have the following conditions associated with it: HighAlarm, HighHighAlarm,
Normal, LowAlarm, and LowLowAlarm.

On the other hand, an event is a detectable occurrence that is of significance to the OPC Server, the device it
represents, and its OPC AE clients. An event may or may not be associated with a condition. For example, the
transition into HighAlarm and Normal conditions are events, which are associated with conditions. However,
operator actions, system configuration changes, and system errors are examples of events, which are not related
to specific conditions. OPC AE clients may subscribe to be notified of the occurrence of specified events.

The OPC AE specification provides methods enabling the OPC AE client to:

• Determine the types of events that are supported by the OPC AE server.

• Enter subscriptions to specified events so that OPC AE clients can receive notifications of their occur-
rences. Filters may be used to define a subset of desired events.

• Access and manipulate conditions implemented by the OPC AE server.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 11 of 81

1.8.3 Historical Data Access (HDA)
Historical engines today produce an added source of information that should be distributed to users and soft-
ware clients that are interested in this information. Currently most historical systems use their own proprietary
interfaces for dissemination of data. There is no capability to augment or use existing historical solutions with
other capabilities in a plug-n-play environment. This requires the developer to recreate the same infrastructure
for their products, as all other vendors have had to develop independently with no interoperability with any other
systems.

In keeping with the desire to integrate data at all levels of a business, historical information can be considered to
be another type of data.

There are several types of Historian servers. Some key types supported by the HDA specification are:

• Simple Trend data servers.
These servers provided little else then simple raw data storage. (Data would typically be the types of
data available from an OPC Data Access server, usually provided in the form of a duple [Time Value &
Quality])

• Complex data compression and analysis servers. These servers provide data compression as well as
raw data storage. They are capable of providing summary data or data analysis functions, such as aver-
age values, minimums and maximums etc. They can support data updates and history of the updates.
They can support storage of annotations along with the actual historical data storage.

1.8.4 Batch (BA)
As products are developed for the batch processing industry based on the “IEC 61512-1 Batch Control – Part 1:
Models and Terminology standard” there is an increasing need to exchange data between these products and
other systems. Interfaces occur at all levels; with Field Management devices (e.g. monitoring stations, control
stations…), Process Management systems (e.g. lab systems, batch control systems, loading, unloading, dispens-
ing, weighing systems…), and with Business Management systems (e.g. ERP and MES). The data exchange needs
to cover four basic types of information; equipment capabilities, current operating conditions, historical and
recipe contents.

This specification defines interfaces for the exchange of:

• Current operating conditions with related equipment capabilities,

• Historical records of batch execution and

• Master recipe contents as well as

• Batch specific event attributes for the OPC Alarms and Events Specification.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 12 of 81

1.8.5 Security (SEC)
OLE for Process Control has defined interfaces for Data Access Servers, Event Servers, and Historical Data Access
Servers. These servers provide information that is valuable to the enterprise and if improperly updated, could
have significant consequences to plant processes. Therefore, there is a need to control client access to these
servers in order to protect this sensitive information and to guard against unauthorized modification of process
parameters.

Security must be provided in a standard manner, consistent among implementations of OPC Servers by various
vendors, to permit the implementation of portable client applications. Security must be well integrated with Win-
dows NT and be as transparent as possible to the client application. Ideally, security should “just be there” with
no special actions by the client application required in order for security to be enforced.

The purpose of this specification is to specify how OPC Servers should implement security using operating sys-
tem facilities. In addition, usage guidelines are provided for the OPC Client implementation to interact with a
security aware OPC Server.

1.8.6 Data eXchange (DX)
OPC Data eXchange (OPC DX) has been designed to move plant floor data horizontally between OPC DA servers.
By presenting this new technology, the OPC DX enables data interoperability between OPC based systems (in-
cluding DCOM and XML based systems running over Ethernet) including PLCs, HMI/SCADA, Devices, and PCs.

OPC DX, in contrast to OPC DA, is used primarily for horizontal data flows between OPC servers. OPC DX is de-
signed to provide for the direct transfer of data from one or more OPC DA and DX servers to an OPC DX server,
without the need for intermediate clients or servers to access the data from one server and forward it to another.
To support these capabilities, OPC DX has the following goals:

• Exchange data between OPC DA servers in environments containing multiple bus technologies.

• Define a standard interface for OPC DX server configuration.

• Use OPC DA where practical.

• Provide an easy migration path for existing OPC DA vendors.

This specification defines abstract services used to configure horizontal data transfers from servers with OPC DA
interfaces to OPC DX servers. It contains appendices that map these abstract services to specific interface tech-
nologies (e.g. Web Services and COM). OPC DX does not specify a new method for these data transfers. Instead,
it relies on OPC Data Access (OPC DA) data transfer capabilities already in use today. This specification defines
the behavior of the OPC DX server as it relates to control and monitoring the data transfer from DA servers to
itself.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 13 of 81

1.8.7 XML-DA
The OPC Foundation has defined interfaces to Data Access Servers, Event Servers, Batch Servers, and History
Data Access Servers. These servers have information that is valuable to the enterprise, and is currently being
provided to enterprise applications via OLE/COM based interfaces.

XML, the eXtensible Markup Language, and XML-based schema languages provide another means to describe
and exchange structured information between collaborating applications. XML is a technology that is more read-
ily available across a wide range of platforms. OPC XML-Data Access (OPC XML-DA) is the OPC Foundation’s
adoption of the XML set of technologies to facilitate the exchange of plant data across the internet, and upwards
into the enterprise domain.

The purpose of this specification is to continue OPC’s goal of enabling and promoting interoperability of appli-
cations. The XML-DA based interfaces will simplify sharing and exchange of OPC data amongst the various levels
of the plant hierarchy (low level devices and up to enterprise systems), and to a wider range of platforms. The
goal for this specification is to provide:

• Support for OPC Data Access 2.0x/3.0 data

• Support for HTTP, and SOAP

• Support for Subscription based services

• Support for a Security approach

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 14 of 81

2 Framework Concepts
This chapter describes the base concepts of the OPC Framework .NET and contains a lot of information. If you
don’t understand something don’t read over it but raise a question IMMEDIATELY as this document contains no
unimportant information.

2.1 APIs
The classes and interfaces defined in the Framework fall into two categories separating functionality that is in-
tended to be used inside the client process (which implies a property access may not directly result in network
activity) and functionality that is intended to be used across processes.

The first category called Client API consists of base classes that provide transparent access to all server func-
tions but also maintain local state information such as server assigned handles for items.

The second category called Server API consists primarily of interfaces and serializable objects that the individual
implementations should never need to sub-class. The Server API is intended only for implementation by servers
and the framework internal protocol specific wrappers. Client applications should never need to access the
Server API directly.

Note that the Client API and Server API classes and interfaces are tightly coupled. For this reason, they are not
separated into distinct modules or namespaces. Classes which are part of the Client API may be sub-classed and
have properties that may be accessed without causing network activity.

For example, the TsOpcServer class is part of the Client API and wraps a remote object that implements the
ITsOpcServer interface. Client applications should create an instance of a TsOpcServer class for each distinct
connection they wish to establish with a remote server. The class TsOpcServer provides implementations of all
methods defined for ITsOpcServer however, this class also provides other properties and methods that make the
object easier to use within a client application.

The following diagram uses the Data Access specification as an example in order to illustrate the internal struc-
ture of the Client API.

DCOM Wrapper
for

OPC DA Servers

XML Wrapper
for

OPC XML-DA Servers

DCOM

SOAP/XML

Common API
(e.g. TsOpcBrowse, TsOpcServer)

Data Access / XML-DA API
(e.g. TsCDaServer, TsCDaSubscription)

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 15 of 81

2.2 Naming Conventions
The Framework API uses the following name space structure for its classes. There is one root namespace: TsOp-
cNet. The TsOpcNet namespace contains all classes used by more then one specification. For each specification
there is another namespace which contains all classes for client and server applications used by one specifica-
tion.

The name spaces use the following naming conventions for all classes, enumerations, structures, interfaces and
delegates:

• All names uses the two character "Ts" at the beginning to identify a Technosoftware specific definition

• The third character can be "C" for a client specific definition, "S" for server specific definition or some-
thing else

• If not "C" or "S" is the third character, one of the following is used:

o "Opc" shows that the definition is used by several specifications

o "Da", "Xda", "Ae", "Hda" shows that the definition is used for one specification but is used for
client as well as server development

 The following table shows the most used definitions and the corresponding namespaces:

Name starts
with

Namespace Description

TsOpc TsOpcNet Used by more then one specification

TsDa TsOpcNet.Da Client and Server specific OPC Data Access and OPC XML-DA definition

TsCDa TsOpcNet.Da Client specific OPC Data Access and OPC XML-DA definition

TsCAe TsOpcNet.Ae Client specific OPC Alarms&Events definition

TsCHda TsOpcNet.Hda Client specific OPC Historical Data Access definition

TsCCpx TsOpcNet.Cpx Client specific OPC Complex Data definition

TsSXda TsOpcNet.SXda Server specific OPC XML-DA definition

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 16 of 81

2.3 Requirements
The system requirements of the Framework and the build applications are described in the following chapters.

2.3.1 Run-time Requirements
• Windows 2000 or Windows-XP Professional

• .NET Framework 1.1 or .NET Framework 2.0

Please be sure that the required software components are installed. If they are not yet installed please install the
software as follows:

2.3.1.1 Install the .NET Framework
Install the .NET Framework redistributable which can be downloaded from www.microsoft.com or is installed
with Microsoft Visual Studio .NET 2003.

2.3.1.2 OPC Core Components
This setup application “OPC Core Components 2.00 Redistributable 2.30.msi” installs the OPC Core components
required by applications based on the OPC Client & Server Framework .NET. It can be found in the bin\redist
directory.

Please be sure that you run this application after you have installed the .NET Framework. Otherwise important
files are not copied.

2.3.1.3 OPC Framework .NET Components
Depending on the .NET Framework version you intend to use, one of the following components are required:

1. TsOpcNet11.v#.dll OPC Framework .NET for .NET Framework 1.1
You can find these files in the bin or bin\strong directory. It should be copied to your application direc-
tory.

2. TsOpcNet20.v#.dll OPC Framework .NET for .NET Framework 2.0
You can find these files in the bin20 or bin20\strong directory. It should be copied to your application
directory.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

www.microsoft.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 17 of 81

2.3.1.4 OPC Framework .NET Core Components
Depending on the .NET Framework version you intend to use, one of the following set of core components are
required:

1. TsOpcNetRcw*.dll OPC Framework .NET Core for .NET Framework 1.1
You can find these files in the bin\redist directory. It should be copied to your application directory.

2. TsOpcNetRcw*.dll OPC Framework .NET Core for .NET Framework 2.0
You can find these files in the bin20\redist directory. It should be copied to your application directory.

Please ensure that you copy the correct files depending on the .NET Framework version you use.

File Description

TsOpcNetRcw.Comn.dll OPC Common 1.10 .NET Wrapper

TsOpcNetRcw.Da.dll OPC Data Access 3.00 .NET Wrapper

TsOpcNetRcw.Ae.dll OPC Alarms & Events 1.10 .NET Wrapper

TsOpcNetRcw.Hda.dll OPC Historial Data Access 1.10 .NET Wrapper

TsOpcNetRcw.Dx.dll OPC Data eXchange 1.00 .NET Wrapper

TsOpcNetRcw.Batch.dll OPC Batch Custom 2.00 .NET Wrapper

TsOpcNetRcw.Sec.dll OPC Security 1.00 .NET Wrapper.

2.3.2 Development Requirements
For development one of the following compilers are supported

• Microsoft Visual Studio .NET 2003 or

• Microsoft Visual Studio 2005 or

• Borland C# Builder or

• Borland Delphi 8.0

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 18 of 81

2.4 Server Identification
The Framework API uses two mechanisms to identify a server:

• The servername, e.g. “TsOpcSource.DataSample.4”, plus the machine name/hostname, e.g. “R34”, iden-
tifies a server. This mechanism is only available for the COM/DCOM based specifications.

• the URL syntax to identify a server. The URL must contain the protocol used to communicate with the
server, the host name or IP address and a unique identifier for the server on the host machine.

The Framework API defines a URL syntax for COM servers which has the following form:

specification://<Hostname>/<ProgID>[/CLSID]

Element Description

specification:// A prefix that indicates the URL is a for a COM server;
opcda OPC Data Access
opcae OPC Alarms&Events
opchda OPC Historical Data Access

Hostname The host name or IP address;

ProgID The programmic identifier for the COM server on the host. This may be a version in-
dependent Prog ID;

CLSID The class indentifier for the COM server. This is always a GUID represented as a string
with the form {00000000-0000-0000-0000-000000000000}. If this field is omitted
then the client must determine the CLSID by resolving the Prog ID on the client’s ma-
chine.

An example of a URL for a COM server is:

opcda://localhost/TsOpcSource.DataSample.4

The syntax for a URL for a XML web service is similar:

http://<Hostname>[:<Port>]/<Application Path>

Element Description

http:// A prefix that indicates the URL is a for a XML web service;

Hostname The host name or IP address;

Port The port used by the web server. The default is 80 if this field is missing.

Application Path The relative path of the web service on the host.

An example of a URL for an XML web service is:

http://localhost//TsOpcXmlDaSampleServer/Service.asmx

The URL specifies all the information that a client needs to connect to the server; however, it is not a unique
identifier for a server. The same server may have several different URLs that reference it.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 19 of 81

2.5 Server Browsing
The Framework API has a single discover interface (ITsOpcDiscovery) that can be used for all protocols, however,
the mechanism used to discover servers is highly dependent on the protocol; as a result, the Framework API
provides the class TsOpcBrowse which implements different functions for browsing COM based servers for the
different specifications.

It is an in process wrapper for the COM based Server Enumerator process (See the appropriate OPC specifications
for a more detailed explanation of the OPC Server Enumerator). The client only needs one instance of this object
for all hosts since the Framework API implementation automatically connects to the COM Server Enumerator
services on remote machines as necessary.

The class TsOpcBrowse requires that the client choose a specific computer to look for servers. For convenience,
TsOpcBrowse has the method ListComputers that returns all computers on the local network.

The class TsOpcBrowse provides functions just returning lists of available servers for a specification, e.g. List-
DAServers.

An example printing out all OPC DA 1.0 / DA 2.0 and DA 3.0 servers on the local computer is:

TsOpcBrowse listDaServer = new TsOpcBrowse();
TsOpcResult res;
TsOpcServerInfo[] si;

res = listDaServer.ListDaServers(out si);
if (res.IsSuccess())
{
 for (int i = si.GetLowerBound(0); i <= si.GetUpperBound(0); i++)
 {
 Console.WriteLine(si[i].ServerName);
 }
}

A client can also use the ITsOpcDiscovery interface which returns a set of TsOpcServer objects that are capable
of connecting to the remote server but are not actually connected. The client should use these TsOpcServer ob-
jects for all communication with the remote server.

An example using the ITsOpcDiscovery interface getting TsOpcServer objects for all DA 3.0 servers on the local
computer is:

TsOpcSpecification[] specifications = new TsOpcSpecification[1];
ITsOpcDiscovery discovery = null;

specifications[0] = TsOpcSpecification.OPC_DA_30;

TsOpcServer[] servers = discovery.GetAvailableServers(specifications);

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 20 of 81

2.6 Server Connections

2.6.1 General
The Framework API requires that clients first instantiate a sub-class of TsOpcServer (e.g. TsCDaServer,
TsCAeServer, TsCHdaServer) that knows how to instantiate a remote server using a specific protocol and inter-
face version. The knowledge of how to instantiate the remote server is embedded in a sub-class of TsOpcFactory
that is passed to the TsOpcServer object constructor. Any implementation of the ITsOpcDiscovery interface
should return a set of TsOpcServer objects that contains a reference to the appropriate class factory.

Note that instantiating a remote server object does not necessarily cause any network activity to occur. In some
cases, like XML-DA, instantiating a remote server object only create a local proxy class that can be used to send
requests to the web service. In the case of COM, instantiating the remote server only creates an instance of a in-
process COM wrapper object.

The actual event of creating an instance of the remote server object occurs when the Connect method on the
TsOpcServer object is called. This design allows the TsOpcServer object to use any additional authentication
information specified by the client application when creating an instance of the server.

Note that the Connect method does allow the client application to specify a different URL when it connects to the
server, however, this can only succeed if the URL specifies a server that can be handled by the TsOpcFactory
object passed to the constructor of the TsOpcServer object.

An example using the TsCDaServer class to connect to an OPC DA server on the local computer is:

const string serverName = "TsOpcSource.DASample.40";
const string ipAddress = "localhost";

try
{
 TsOpcComputerInfo host = new TsOpcComputerInfo(ipAddress);
 TsCDaServer myDaServer = new TsCDaServer();

 myDaServer.Connect(serverName, host);

}
catch (TsOpcResultException e)
{
 Console.WriteLine(" " + e.Message);
}
catch(Exception e)
{
 Console.WriteLine(" " + e.Message);
}

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 21 of 81

2.6.2 Security
The client application passes user authentication information in the Credentials property of the
TsOpcConnectData class. This property contains the user name, password and domain for Windows account that
the Framework API will use to authenticate the client when connecting to the server. The Framework API only
supports integrated Windows authentication.

An example using the TsCDaServer class to connect to an OPC DA server on a remote computer with Credentials
is:

const string serverName = "TsOpcSource.DASample.40";
const string computerName = "R40";
TsOpcNet.URL url;

try
{
 url = new TsOpcNet.URL("opcda://"+computerName+"/"+serverName);
 System.Net.NetworkCredential credentials =
 new System.Net.NetworkCredential("username","password");
 WebProxy proxy = null;
 TsOpcNet.Com.Factory factory = new TsOpcNet.Com.Factory();
 TsOpcComputerInfo host = new TsOpcComputerInfo(ipAddress);
 TsCDaServer myDaServer = new TsCDaServer(factory, url);

 myDaServer.Connect(url, new TsOpcConnectData(credentials, proxy));

}
catch (TsOpcResultException e)
{
 Console.WriteLine(" " + e.Message);
}
catch(Exception e)
{
 Console.WriteLine(" " + e.Message);
}

2.6.3 HTTP Proxy
The client application may override the default HTTP proxy server configuration used by the Framework API with
the SetProxy method on the TsOpcConnectData class. The MSDN documentation for the WebProxy class has
more information on HTTP proxy server configuration parameters

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 22 of 81

2.6.4 Error Handling

2.6.4.1 TsOpcResult
The TsOpcResult class is used to indicate that an error occurred while processing a remote method call or while
processing a single item during a remote method call. A TsOpcResult is uniquely identified by an XML qualified
name and a 32 bit integer. A TsOpcResult may only have a value specified for only one of the identifiers. If both
identifiers are specified then the 32 bit integer is used to test for equality.

These dual identifiers are necessary to accommodate vendor defined HRESULT codes which may be returned
from COM servers and XML qualified name codes that may be returned from XML web services. The framework
defines constants for all result codes that are explicitly defined in the OPC specifications. Client applications
should generally use these constants when testing for specific result codes.

The TsOpcResult class defines the Succeeded and Failed methods to determine whether a result code represents
critical or a non-critical error. An integer code that is less than zero or a qualified name beginning with ‘E_’ indi-
cates a critical error. An integer code that is greater than or equal to zero or a qualified name beginning with ‘S_’
indicates a non-critical error.

2.6.4.2 Exceptions
The framework will throw exceptions whenever it encounters a critical error that prevents processing from con-
taining. If the exception occurs because of an error returned from the server the framework will map that error
onto a TsOpcResult and throw a TsOpcResultException.

Other types of exceptions, such as ArgumentNullException, may be thrown by the framework when appropriate.

2.6.5 Garbage Collection
Many of the interfaces and classes defined in the Framework API may contain references to unmanaged re-
sources such as COM servers. For this reason, the default .NET garbage collection algorithm is not sufficient to
ensure to that a client application does not have memory leaks. For this reason, all classes that reference or have
a sub-class that could reference unmanaged resources have implemented the IDisposable interface. This behav-
ior implies that the client application must explicitly call the Dispose method whenever it is implemented by a
class in the Framework API. If a client application creates a sub-class from a class that implements the Dispose
method then it must ensure the base class Dispose method is called if it overrides the method.

Note that it is not possible to use explicit destructors to ensure that Dispose is called because the .NET frame-
work does not allow other objects (such as COM servers) to be referenced in the Dispose method if it is called
from an explicit destructor.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 23 of 81

2.6.6 I tem Identif iers
The Framework API uses the TsOpcItem class to store attributes used to uniquely identify an OPC item. This
class is a base class for a number of other item related classes. This class has four properties:

Element Description

ItemName This is a unique string assigned by the server that identifies an item within a server’s
address space. It may also be qualified with the ItemPath.

ItemPath This is an additional string qualifier assigned by the server for an item within a
server’s address space.

ServerHandle This is a unique value assigned by the server when an item is added to a group owned
by a client. This identifier is only unique within the context of the item group and is
not persistent. This identifier must be used when referencing items within a group.

ClientHandle This is a unique value assigned by the client when an item is added to a create owned
by the client. This value only has meaning to the client and may not be unique unless
the client chooses to make it unique. This value is returned by the server with any item
result when completing any group related request.

The ServerHandle and ClientHandle properties may be any object. This allows client applications to associate
objects directly with items rather than having to maintain a lookup table for a string or integer value.

The documentation indicates which of the fields are required for any particular method call and what values will
be in the response. The Framework API allows client applications to control whether the ItemName, ItemPath and
ClientHandle are returned with the results to a request. Server API

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 24 of 81

2.7 Server API
The Server API consists primarily of interfaces and serializable objects that the individual implementations
should never need to sub-class. The Server API is intended only for implementation by servers and protocol
specific wrappers. Client applications should never need to access the Server API directly.

2.7.1 Interfaces

2.7.1.1 ITsOpcServer Interface
This interface defines functionality that is common to all OPC servers.

This interface should be implemented by .NET based servers or by the in-
process wrappers for COM or SOAP/XML protocols. In both cases, a new
instance of this object will be created for each client ‘context’. The client
context defines the scope for client state information which can be modified
via this interface. In some cases (e.g. the SOAP/XML stub), a new client
context will be created for each HTTP request.

The ITsOpcServer interface is the base for the following sub-classes:

Name Description

TsOpcServer A base class for an in-process ob-
ject used to access OPC servers.

2.7.1.1.1 Methods
The ITsOpcServer interface has the following methods:

Name Description

GetErrorText Returns the localized text for the specified result code.
This method has the following parameters:

Name Description

locale The locale name in the format "[language code]-
[country/region code]".

resultID The result code identifier.

[Return Value] A message localized for the locale that is the best match
for the requested locale.

The server must use the same algorithm that it used in SetLocale to determine the
best match for the requested locale if it does not support the requested locale for
the specified result code. A server may not be able to return a properly localized
error message for every result code that it returns, however, a server must always
be able to return a message in its default locale. This method throws an exception
if an error occurs.

Possible errors are:

Name Description

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 25 of 81

E_INVALIDARG An argument to the function was invalid. (For exam-
ple, the error code specified is not valid.)

GetLocale The locale used in any error messages or results returned to the client.
This method has the following parameters:

Name Description

[Return Value] The locale name in the format "[language code]-
[country/region code]".

All locales are identified with strings that contain a two character abbreviation for
a language and an (optional) two character abbreviation for a country/region.
Locales that do not have a country/region code are called ‘neutral’ locales. The
complete set of valid language and country/region codes are derived from the ISO
639-1and ISO 3166 standards. This method throws an exception if an error oc-
curs. Possible errors are:

Name Description

E_FAIL The operation failed.

E_INVALIDARG An argument to the function was invalid. (For exam-
ple, the error code specified is not valid.)

GetSupportedLocales Returns the locales supported by the server.
This method has the following parameters:

Name Description

[Return Value] An array of locales with the format "[language code]-
[country/region code]".

All servers must support at least one locale. In addition, the default locale for the
server must be the first element in the returned array. The default locale is the
locale the server will use if a client requests the invariant (“”) locale. This method
throws an exception if an error occurs. Possible errors are:

Name Description

E_FAIL The operation failed.

E_INVALIDARG An argument to the function was invalid. (For exam-
ple, the error code specified is not valid.)

SetClientName Allows the client to optionally register a client name with the server. This is in-
cluded primarily for debugging purposes. The recommended behavior is that the
client set his Node name and EXE name here. This method throws an exception if
an error occurs. Possible errors are:

Name Description

E_FAIL The operation failed.

E_INVALIDARG An argument to the function was invalid. (For exam-
ple, the error code specified is not valid.)

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 26 of 81

SetLocale Sets the locale used in any error messages or results returned to the client.

This method has the following parameters:

Name Description

locale The locale name in the format "[language code]-
[country/region code]".

[Return Value] A locale that the server supports and is the best match
for the requested locale.

If the server does not support the requested locale, the server must find a best
match by ignoring the country/region code and find a locale with the same lan-
guage. If the server does not support any locales with the requested language
then it chooses its default locale.

The client may specify a blank locale (“”) which is also known as the ‘invariant’
locale. The server must always map this locale onto the a real locale that repre-
sents the default for the server such as “en-US” (English-US) or de-DE (German-
Germany). This method throws an exception if an error occurs. Possible errors are:

Name Description

E_FAIL The operation failed.

E_INVALIDARG An argument to the function was invalid. (For exam-
ple, the error code specified is not valid.)

2.7.1.1.2 Events
The ITsOpcServer interface has the following events:

Name Description

ServerShutdown An event to receive server shutdown notifications.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 27 of 81

2.7.2 Classes

2.7.2.1 TsOpcItem Class
This class represents a unique item identifier.

All OPC servers represent underlying physical
data points as uniquely identifiable items
within a structured address space. Each of
these items may have one or more identifiers
associated with it that can be used by a client
to access specific data points via the OPC
interfaces. The TsOpcItem class contains
different unique identifiers that may be useful
in different contexts. This class is intended to
be used as a based class for other item related
classes.

2.7.2.1.1 Properties
The TsOpcItem class has the following
properties:

Name Description

ClientHandle A unique identifier for an item assigned by the client.
The ClientHandle only has meaning when an item is added to a set (such as a
data subscription) defined by the client. The server will always return the Clien-
tHandle with the results of any operation related to that set of items.

ItemName The primary identifier for an item within the server namespace.
A null or empty string is not a valid value.
The ItemName and ItemPath uniquely identify an item within a server.

ItemPath The secondary identifier for an item within the server namespace.
The ItemName and ItemPath uniquely identify an item within a server.

ServerHandle A unique identifier for an item assigned by the server.
The ServerHandle only has meaning when an item is added to a set (such as a
data subscription) defined by the client. The client must always provide the
ServerHandle when requesting access to an item within the set.

The TsOpcItemResult class extends this call by adding the following properties:

Name Description

DiagnosticInfo Vendor specific diagnostic information (not the localized error text).

Result The error id for the result of an operation on an item.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 28 of 81

2.8 Client API
The Client API consists of a set of class that always resides inside the client process. These classes provide ac-
cess to the remote servers and maintain client side state information. The main objective of the Client API is to
provide a convenient, easy to use .NET programming interface for .NET client development. It comprises mainly
of serializable classes that implement all of the features of the remote servers as well as objects that track in-
formation like server item handles.

This chapter describes the base concepts of the Client API and explains the main classes of it and is important
for the understanding of the specification specific classes. Description of the specification specific classes, e.g.
TsCDaServer can be found later in this document.

2.8.1 Structures

2.8.1.1 TsOpcSpecification Structure
This structure defines the different specification and is be used for
browsing of OPC servers.

2.8.1.1.1 Properties
The TsOpcSpecification structure has the following fields:

Name Description

OPC_AE_10 OPC Alarms&Events 1.0
OPC Alarms&Events 1.1.

OPC_BATCH_10 OPC Batch 1.0

OPC_BATCH_20 OPC Batch 2.0

OPC_DA_10 OPC Data Access 1.0.

OPC_DA_20 OPC Data Access 2.0.

OPC_DA_30 OPC Data Access 3.0.

OPC_DX_10 OPC Data Exchange 1.0.

OPC_HDA_10 OPC Historical Data Access 1.0.

XML_DA_10 OPC XML-DA 1.0.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 29 of 81

2.8.2 Classes

2.8.2.1 TsOpcComputerInfo Class
This class store computer information like name of computer and is be used
for browsing of OPC servers and connecting to OPC servers.

2.8.2.1.1 Properties
The TsOpcComputerInfo class has the following properties:

Name Description

ComputerName The Computer Name to use.

DomainName The Domain Name to use.

Password The Password to use.

UserName The Username to use.

2.8.2.2 TsOpcServerInfo Class
This class store OPC server information like name of computer and is returned
by the server browsing functions.

2.8.2.2.1 Properties
The TsOpcServerInfo class has the following properties:

Name Description

Description A description about the OPC Server

ServerGuid Globally Unique Identifier (GUID) of the
OPC Server

ServerName The OPC Server name

Specifications Supported specifications by the OPC
Server as TsOpcSpecification structure.

VendorInfo Vendor specific information about the
OPC Server

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 30 of 81

2.8.2.3 TsOpcBrowse Class
This class provides functions to browse the computers within a
network and the installed OPC servers on the local machine or the
specified computer.

It is an in process wrapper for the COM based Server Enumerator
process (See the appropriate OPC specifications for a more detailed
explanation of the OPC Server Enumerator). The client only needs
one instance of this object for all hosts since the Framework API
implementation automatically connects to the COM Server
Enumerator services on remote machines as necessary.

The class TsOpcBrowse requires that the client choose a specific
computer to look for servers. For convenience, TsOpcBrowse has
the method ListComputers that returns all computers on the local
network.

The class TsOpcBrowse provides functions just returning lists of available servers for a specification, e.g. List-
DAServers.

2.8.2.3.1 Methods
The TsOpcBrowse class has the following methods:

Name Description

ListAeServers Get the names of the registered OPC AE 1.00 and AE 1.10 servers. The ProgId of
all OPC Alarms & servers is returned as a string array. This array can e.g. be di-
rectly displayed in a Windows control.
This method has the following parameters:

Name Description

serverInfos OPC Server Information as an array of TsOpcServerInfo
objects.

computerInfo Remote Computer Information as an TsOpcComputerInfo
object.

[Return Value] A TsOpcResult object with the result of the operation.

Possible return codes are:

Name Description

E_FAIL The operation failed.

REGDB_E_CLASSNOTREG Unable to create an instance of the Component
Categories Manager on the remote machine.

REGDB_E_READREGDB There was an error reading the registry.

OLE_E_REGDB_KEY The ProgID = MainUserTypeName or CLSID =
MainUserTypeName keys are missing from the
registry.

E_INVALIDARG One or more arguments are incorrect.

E_OUTOFMEMORY Insufficient memory to create and return an
enumerator object.

S_OK The operation succeeded.
ListComputers Enumerates hosts that may be accessed for server discovery.

This method has the following parameters:

Name Description

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 31 of 81

computers Names of found computers as string array.

[Return Value] A TsOpcResult object with the result of the operation.

Possible return codes are:

Name Description

ERROR_NO_BROWSER_SERVERS_FOUND No browser servers found.

S_OK The operation succeeded.
ListDaServers Get the names of the registered OPC DA 1.0 / DA 2.0 and DA 3.0 servers. The

ProgId of all OPC Data Access is returned as a string array. This array can e.g. be
directly displayed in a Windows control.
This method has the following parameters:

Name Description

serverInfos OPC Server Information as an array of TsOpcServerInfo
objects.

computerInfo Remote Computer Information as an TsOpcComputerInfo
object.

[Return Value] A TsOpcResult object with the result of the operation.

Possible return codes are:

Name Description

E_FAIL The operation failed.

REGDB_E_CLASSNOTREG Unable to create an instance of the Component
Categories Manager on the remote machine.

REGDB_E_READREGDB There was an error reading the registry.

OLE_E_REGDB_KEY The ProgID = MainUserTypeName or CLSID =
MainUserTypeName keys are missing from the
registry.

E_INVALIDARG One or more arguments are incorrect.

E_OUTOFMEMORY Insufficient memory to create and return an
enumerator object.

S_OK The operation succeeded.
ListDxServers Get the names of the registered OPC DX 1.00 servers. The ProgId of all OPC Data

eXchange servers is returned as a string array. This array can e.g. be directly dis-
played in a Windows control.
This method has the following parameters:

Name Description

serverInfos OPC Server Information as an array of TsOpcServerInfo
objects.

computerInfo Remote Computer Information as an TsOpcComputerInfo
object.

[Return Value] A TsOpcResult object with the result of the operation.

Possible return codes are:

Name Description

E_FAIL The operation failed.

REGDB_E_CLASSNOTREG Unable to create an instance of the Component
Categories Manager on the remote machine.

REGDB_E_READREGDB There was an error reading the registry.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 32 of 81

OLE_E_REGDB_KEY The ProgID = MainUserTypeName or CLSID =
MainUserTypeName keys are missing from the
registry.

E_INVALIDARG One or more arguments are incorrect.

E_OUTOFMEMORY Insufficient memory to create and return an
enumerator object.

S_OK The operation succeeded.
ListHdaServers Get the names of the registered OPC HDA 1.00 and HDA 1.10 servers. The ProgId

of all OPC Historical Data Access servers is returned as a string array. This array
can e.g. be directly displayed in a Windows control.
This method has the following parameters:

Name Description

serverInfos OPC Server Information as an array of TsOpcServerInfo
objects.

computerInfo Remote Computer Information as an TsOpcComputerInfo
object.

[Return Value] A TsOpcResult object with the result of the operation.

Possible return codes are:

Name Description

E_FAIL The operation failed.

REGDB_E_CLASSNOTREG Unable to create an instance of the Component
Categories Manager on the remote machine.

REGDB_E_READREGDB There was an error reading the registry.

OLE_E_REGDB_KEY The ProgID = MainUserTypeName or CLSID =
MainUserTypeName keys are missing from the
registry.

E_INVALIDARG One or more arguments are incorrect.

E_OUTOFMEMORY Insufficient memory to create and return an
enumerator object.

S_OK The operation succeeded.
ListServers Get the names of the OPC servers with one of the specifications listed in the

Specifications parameter. The ProgId of all OPC Servers is returned as a string
array. This array can e.g. be directly displayed in a Windows control.
This method has the following parameters:

Name Description

specifications Array with the TsOpcSpecification object of each specifi-
cation to include.

serverInfos OPC Server Information as an array of TsOpcServerInfo
objects.

computerInfo Remote Computer Information as an TsOpcComputerInfo
object.

[Return Value] A TsOpcResult object with the result of the operation.

Possible return codes are:

Name Description

E_FAIL The operation failed.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 33 of 81

REGDB_E_CLASSNOTREG Unable to create an instance of the Component
Categories Manager on the remote machine.

REGDB_E_READREGDB There was an error reading the registry.

OLE_E_REGDB_KEY The ProgID = MainUserTypeName or CLSID =
MainUserTypeName keys are missing from the
registry.

E_INVALIDARG One or more arguments are incorrect.

E_OUTOFMEMORY Insufficient memory to create and return an
enumerator object.

S_OK The operation succeeded.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 34 of 81

2.8.2.4 TsOpcServer Class
This class is a base class for an in-process object used to
access OPC servers and is an in-process wrapper for a remote
server (i.e. a server that implements the ITsOpcServer
interface). This class provides a mechanism to cache properties
of the remote server locally for fast access and supports
serialization (which simplifies the task of saving client
configuration information).

The Framework API also provides standard sub-classes for
different OPC specifications. A client may choose to create their
own sub-classes of this class (or its sub-classes) to handle
application specific server data.

This object contains references to unmanaged resources (e.g.
COM servers), as a result, this object must be explicitly
released by calling the Dispose method. A call to the Dispose
method is automatically done by calling the Disconnect
method.

The TsOpcServer class is the base class for the following sub-
classes:

Name Description

TsCDaServer This class is the main interface to
access an OPC Data Access or OPC
XML-DA server

TsCAeServer This class is the main interface to
access an OPC Alarms&Events
server

TsCHdaServer This class is the main interface to
access an OPC Historical Data Ac-
cess server

2.8.2.4.1 Properties
The TsOpcServer class has the following properties:

Name Description

IsConnected Whether the remote server is currently connected.

Locale The default of locale used by the remote server.

Name A short descriptive name for the server assigned by the client.

PingEnabled Defines whether the ping mechanism is enabled or disabled.

PingRetries Defines if the number of ping retries. Default is 3.

PingTimeout Defines if the timeout for one ping. Default is 1 second.

SupportedLocales The set of locales supported by the remote server.

Url The URL that describes the network location of the server.

2.8.2.4.2 Methods
The TsOpcServer class has the following methods:

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 35 of 81

Name Description

Clone Returns an unconnected copy of the server with the same URL.

Connect Establishes a physical connection to the remote server.
This method has the following parameters:

Name Description

url The network address for the remote server.
It replaces the default URL for the server if
the method succeeds.

connectData Any protocol configuration or user authenti-
cation information.

Disconnect Disconnects from the server and releases all network resources. Also Dispose() is
called.

Dispose This must be called explicitly by clients to ensure the remote server is released. Is
automatically called by the Disconnect method.

Duplicate Creates a new instance of a server object with the same factory and url.
This method is not the same as the Clone method since it does not copy the val-
ues of any properties to the new object (for example, existing subscriptions are
not copied).
The server object requires that the Dispose method be called explicitly, as a re-
sult, client applications which have code (such as a user controls or forms) that
access a server in different contexts, may find it simpler to duplicate the server
object rather than keep track of references across multiple controls.
This method has the following parameters:

Name Description

[Return Value] A duplicate of the server object.
FindBestLocale Finds the best matching locale given a set of supported locales.

This method has the following parameters:

Name Description

[Return Value] The locale name in the format "[language code]-
[country/region code]".

All locales are identified with strings that contain a two character abbreviation for
a language and an (optional) two character abbreviation for a country/region.
Locales that do not have a country/region code are called ‘neutral’ locales. The
complete set of valid language and country/region codes are derived from the ISO
639-1and ISO 3166 standards.

GetErrorText
(ITsOpcServer)

Returns the localized text for the specified result code.
This method has the following parameters:

Name Description

locale The locale name in the format "[language code]-
[country/region code]".

resultID The result code identifier.

[Return Value] A message localized for the locale that is the best match
for the requested locale.

The server must use the same algorithm that it used in SetLocale to determine the
best match for the requested locale if it does not support the requested locale for

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 36 of 81

the specified result code. A server may not be able to return a properly localized
error message for every result code that it returns, however, a server must always
be able to return a message in its default locale. This method throws an exception
if an error occurs. Possible errors are:

Name Description

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid. (For exam-
ple, the error code specified is not valid.)

GetLocale
(ITsOpcServer)

The locale used in any error messages or results returned to the client.
This method has the following parameters:

Name Description

[Return Value] The locale name in the format "[language code]-
[country/region code]".

All locales are identified with strings that contain a two character abbreviation for
a language and an (optional) two character abbreviation for a country/region.
Locales that do not have a country/region code are called ‘neutral’ locales. The
complete set of valid language and country/region codes are derived from the ISO
639-1and ISO 3166 standards. This method throws an exception if an error oc-
curs. Possible errors are:

Name Description

E_FAIL The operation failed.

E_INVALIDARG An argument to the function was invalid. (For exam-
ple, the error code specified is not valid.)

GetSupportedLocales
(ITsOpcServer)

Returns the locales supported by the server
This method has the following parameters:

Name Description

[Return Value] An array of locales with the format "[language code]-
[country/region code]".

All servers must support at least one locale. In addition, the default locale for the
server must be the first element in the returned array. The default locale is the
locale the server will use if a client requests the invariant (“”) locale. This method
throws an exception if an error occurs. Possible errors are:

Name Description

E_FAIL The operation failed.

E_INVALIDARG An argument to the function was invalid. (For exam-
ple, the error code specified is not valid.)

SetClientName
(ITsOpcServer)

Allows the client to optionally register a client name with the server. This is in-
cluded primarily for debugging purposes. The recommended behavior is that the
client set his Node name and EXE name here. This method throws an exception if
an error occurs. Possible errors are:

Name Description

E_FAIL The operation failed.

E_INVALIDARG An argument to the function was invalid. (For exam-
ple, the error code specified is not valid.)

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 37 of 81

SetLocale
(ITsOpcServer)

Sets the locale used in any error messages or results returned to the client.
This method has the following parameters:

Name Description

locale The locale name in the format "[language code]-
[country/region code]".

[Return Value] A locale that the server supports and is the best match
for the requested locale.

If the server does not support the requested locale, the server must find a best
match by ignoring the country/region code and find a locale with the same lan-
guage. If the server does not support any locales with the requested language
then it chooses its default locale.

The client may specify a blank locale (“”) which is also known as the ‘invariant’
locale. The server must always map this locale onto the a real locale that repre-
sents the default for the server such as “en-US” (English-US) or de-DE (German-
Germany). This method throws an exception if an error occurs. Possible errors are:

Name Description

E_FAIL The operation failed.

E_INVALIDARG An argument to the function was invalid. (For exam-
ple, the error code specified is not valid.)

2.8.2.4.3 Events
The TsOpcServer class has the following events:

Name Description

ServerShutdown
(ITsOpcServer)

An event to receive server shutdown notifications.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 38 of 81

3 OPC DA/XML-DA Client Development
This chapter describes the OPC Data Access and OPC XML-DA specific classes of the Server API and Client API.
Knowledge of the corresponding specifications is required for the understanding of this chapter.

3.1 Server API
3.1.1 Enumerations

3.1.1.1 TsCDaBrowseFilter enumeration
This enumeration defines the type of browse elements to return during a
browse.

3.1.1.1.1 Properties
The TsCDaBrowseFilter enumeration has the following properties:

Name Description

All Return all types of browse elements.

Branch Return only elements that contain other
elements.

Item Return only elements that represent items.

3.1.1.2 TsCDaResultFilter enumeration
This enumeration defines the filters applied by the server before returning item
results.

3.1.1.2.1 Properties
The TsCDaResultFilter enumeration has the following properties:

Name Description

ItemName Include the ItemName in the ItemIdentifier
if bit is set.

ItemPath Include the ItemPath in the ItemIdentifier
if bit is set.

ClientHandle Include the ClientHandle in the ItemIden-
tifier if bit is set.

ItemTime Include the Timestamp in the ItemValue if
bit is set.

ErrorTExt Include verbose, localized error text with
result if bit is set.

DiagnosticInfo Include additional diagnostic information
with result if bit is set.

Minimal Include the ItemName and Timestamp if
bit is set.

All Include all information in the results if bit
is set.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 39 of 81

3.1.1.3 TsCDaServerState enumeration
This enumeration defines the set of possible server states.

3.1.1.3.1 Properties
The TsCDaServerState enumeration has the following properties:

Name Description

Unknown The server state is not known.

Running The server is running normally.

Failed The server is not functioning due to a fatal
error.

NoConfig The server cannot load its configuration
information.

Suspended The server has halted all communication
with the underlying hardware.

Test The server is disconnected from the un-
derlying hardware.

CommFault The server cannot communicate with the
underlying hardware.

3.1.1.4 TsCDaStateMask enumeration
This enumeration defines masks to be used when modifying the subscription or
item state.

3.1.1.4.1 Properties
The TsCDaStateMask enumeration has the following properties:

Name Description

Name The name of the subscription.

ClientHandle The client assigned handle for the item or
subscription.

Locale The locale to use for results returned to
the client from the subscription.

Active Whether the item or subscription is active.

UpdateRate The maximum rate at which data update
notifications are sent.

KeepAlive The longest period between data update
notifications.
Note: This feature is only supported with
OPC Data Access 3.0 Servers.

ReqType The requested data type for the item.

Deadband The deadband for the item or subscrip-
tion.

SamplingRate The rate at which the server should check
for changes to an item value.

EnableBufferung Whether the server should buffer multiple
changes to a single item.

All All fields are valid.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 40 of 81

3.1.1.5 TsDaAccessRights enumeration
This enumeration defines the possible item access rights.

Indicates if this item is read only, write only or read/write. This is NOT related to
security but rather to the nature of the underlying hardware.

3.1.1.5.1 Properties
The TsDaAccessRights enumeration has the following properties:

Name Description

unknown The access rights for this item are un-
known.

readable The client can read the data item's value.

writable The client can change the data item's
value.

readWritable The client can read and change the data
item's value.

3.1.1.6 TsDaEuType enumeration
This enumeration defines the possible item engineering unit types.

3.1.1.6.1 Properties
The TsDaEuType enumeration has the following properties:

Name Description

noEnum No engineering unit information available

analog Analog engineering unit - will contain a
SAFEARRAY of exactly two doubles
(VT_ARRAY | VT_R8) corresponding to the
LOW and HI EU range.

enumerated Enumerated engineering unit - will con-
tain a SAFEARRAY of strings (VT_ARRAY |
VT_BSTR) which contains a list of strings
(Example: “OPEN”, “CLOSE”, “IN TRANSIT”,
etc.). Corresponding to sequential nu-
meric values (0, 1, 2, etc.)

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 41 of 81

3.1.1.7 TsDaLimitBits enumeration
This enumeration defines the possible limit status bits.

The Limit Field is valid regardless of the Quality and Substatus. In some cases
such as Sensor Failure it can provide useful diagnostic information.

3.1.1.7.1 Properties
The TsDaLimitBits enumeration has the following properties:

Name Description

None The value is free to move up or down

Low The value has ‘pegged’ at some lower
limit

High The value has ‘pegged’ at some high limit

Constant The value is a constant and cannot move

3.1.1.8 TsDaQualityBits enumeration
This enumeration defines the possible quality status bits.

These flags represent the quality state for an item's data value. This is
intended to be similar to but slightly simpler than the Fieldbus Data
Quality Specification (section 4.4.1 in the H1 Final Specifications). This
design makes it fairly easy for both servers and client applications to
determine how much functionality they want to implement. The Limit Field
is valid regardless of the Quality and Substatus. In some cases such as
Sensor Failure it can provide useful diagnostic information.

3.1.1.8.1 Properties
The TsDaQualityBits enumeration has the following properties:

Name Description

Good The Quality of the value is Good.

GoodLocalOverride The value has been Overridden. Typically this means the input has been
disconnected and a manually entered value has been 'forced'.

Bad The value is bad but no specific reason is known.

BadConfigurationError There is some server specific problem with the configuration. For example
the item in question has been deleted from the configuration.

BadNotConnected The input is required to be logically connected to something but is not. This
quality may reflect that no value is available at this time, for reasons like the
value may have not been provided by the data source.

BadDeviceFailure A device failure has been detected.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 42 of 81

BadSensorFailure A sensor failure had been detected (the ’Limits’ field can provide additional

diagnostic information in some situations).

BadLastKnownValue Communications have failed. However, the last known value is available.
Note that the ‘age’ of the value may be determined from the time stamp in
the item state.

BadCommFailure Communications have failed. There is no last known value is available.

BadOutOfService The block is off scan or otherwise locked. This quality is also used when the
active state of the item or the group containing the item is InActive.

BadWaitingForInitialData After Items are added to a group, it may take some time for the server to
actually obtain values for these items. In such cases the client might per-
form a read (from cache), or establish a ConnectionPoint based subscription
and/or execute a Refresh on such a subscription before the values are
available. This substatus is only available from OPC DA 3.0 or newer serv-
ers.

Uncertain There is no specific reason why the value is uncertain.

UncertainLastUsableValue Whatever was writing this value has stopped doing so. The returned value
should be regarded as ‘stale’. Note that this differs from a BAD value with
Substatus badLastKnownValue (Last Known Value). That status is associated
specifically with a detectable communications error on a ‘fetched’ value.
This error is associated with the failure of some external source to ‘put’
something into the value within an acceptable period of time. Note that the
‘age’ of the value can be determined from the time stamp in the item state.

UncertainSensorNotAccurate Either the value has ‘pegged’ at one of the sensor limits (in which case the
limit field should be set to low or high) or the sensor is otherwise known to
be out of calibration via some form of internal diagnostics (in which case
the limit field should be none).

UncertainEUExceeded The returned value is outside the limits defined for this parameter. Note
that in this case (per the Fieldbus Specification) the ‘Limits’ field indicates
which limit has been exceeded but does NOT necessarily imply that the
value cannot move farther out of range.

UncertainSubNormal The value is derived from multiple sources and has less than the required
number of Good sources.

3.1.1.9 TsDaQualityMasks enumeration
This enumeration defines bit masks for the quality.

3.1.1.9.1 Properties
The TsDaQualityMasks enumeration has the following properties:

Name Description

QualityMask Quality related bits

LimitMask Limit related bits

VendorMask Vendor specific bits

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 43 of 81

3.1.2 Structures

3.1.2.1 TsCDaPropertyID Structure
This structure contains a unique identifier for a property.

3.1.2.1.1 Properties
The TsCDaPropertyID structure has the following fields:

Name Description

Code Used for properties identified by a inte-
ger.

Name Used for properties identified by a
qualified name.

3.1.2.2 TsCDaQuality Structure
This structure contains the quality field for an item value.

3.1.2.2.1 Properties
The TsCDaQuality structure has the following fields:

Name Description

LimitBits The value in the limit bits field.

QualityBits The value in the quality bits field.

VendorBits The value in the quality bits field.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 44 of 81

3.1.3 Interfaces

3.1.3.1 ITsDaServer Interface

This interface defines functionality specific to OPC Data Access and XML-DA
servers.

This interface inherits from the ITsOpcServer interface.

This interface is intended to merge the functionality defined by the OPC DA
and OPC XML-DA specifications into a single interface based on the .NET
programming model.

The ITsDaServer interface is the base for the following sub-classes:

Name Description

TsCDaServer This class is a base class for an in-
process object used to access OPC
Data Access and OPC XML-DA serv-
ers

3.1.3.1.1 Methods
The ITsDaServer interface has the following methods:

Name Description

Browse This method fetches the children of a branch that meet the filter criteria.

This method has the following parameters:

Name Description

itemID The identifier of branch which is the target of
the search.
The ClientHandle and ServerHandle have no
meaning in this context.
Passing a null value searches for elements with
no parent (e.g. the top of tree).

filters The filters to use to limit the set of child ele-
ments returned.
The TsCDaBrowseFilters object is described in
section 3.1.4.4.

position An object used to continue a browse operation
A browse operation may not complete if the
number of elements exceeds the value of the
MaxElementsReturned filter. The client may
continue the browse by calling BrowseNext,
otherwise the client must call Dispose on the
TsCDaBrowsePosition object to ensure that all
resources allocated for the browse are re-
leased.
A server will typically create sub-classes of the
TsCDaBrowsePosition object that contain in-
formation used to optimize BrowseNext op-

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 45 of 81

erations. This object has no properties that are
visible to clients.

[Return Value] The set of elements found.
BrowseNext This method continues a browse operation with previously specified search crite-

ria.

This method has the following parameters:

Name Description

position An object containing the browse operation state
information.
This object must be returned from a call to
Browse. If the position is invalid for any reason
this method throws a TsOpcResultException
exception.
If there are no more elements to fetch this
method will set the TsCDaBrowsePosition to
null. Otherwise, this method will return a new
TsCDaBrowsePosition object.

[Return Value] The set of elements found.
CancelSubscription This method cancels a subscription and releases all resources allocated for it.

Clients must always explicitly cancel all subscriptions that it creates.

This method has the following parameters:

Name Description

subscription The subscription to cancel.
CreateSubscription This method creates a new subscription.

A subscription allows a client to receive asynchronous notifications from the
server whenever an item value changes. All subscriptions that a client creates
must be destroyed with the CancelSubscription method.

The SOAP/XML protocol introduces some complexity with regards to subscriptions
because no other method requires that the server maintain state information
across method calls. The SOAP/XML stub resolves this issue by managing the
references to the ITsDaServer and ITsCDaSubscription objects on behalf of the
remote client.

 This method has the following parameters:

Name Description

state The initial state of the subscription.
The TsCDaSubscriptionState object is described
below.

[Return Value] The new subscription object.
GetProperties This method returns the item properties for a set of items.

This method has the following parameters:

Name Description

itemIDs A list of item identifiers.

propertyIDs A list of properties to fetch for each item.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 46 of 81

If this parameter is null then all available prop-
erties are returned.

returnValues Whether the property values should be returned
with the properties.

[Return Value] A list of properties for each item.
The TsCDaItemPropertyCollection object is de-
scribed below.

The TsCDaItemPropertyCollection object extends ArrayList and has the following
properties/methods:

Name Description

ItemName The primary identifier for the item within the
server namespace.

ItemPath The secondary identifier for the item within the
server namespace.

Result A result code that indicates any item-level er-
rors.

operator[] Returns the TsCDaItemProperty object at the
specified index.

GetResultFilters This method returns the filters applied by the server to any item results returned
to the client.

This method has the following parameters:

Name Description

[Return Value] A bit mask indicating which fields should be
returned in any item results.

The set of masks is has the following values:

Name Value Description

ItemName 0x01 Include the ItemName in the TsOpcItem if bit is
set.

ItemPath 0x02 Include the ItemPath in the TsOpcItem if bit is
set.

ClientHandle 0x04 Include the ClientHandle in the TsOpcItem if bit
is set.

ItemTime 0x08 Include the Timestamp in the ItemValue if bit is
set.

ErrorText 0x10 Include verbose, localized error text with result if
bit is set.

DiagnosticInfo 0x20 Include additional diagnostic information with
result if bit is set.

Minimal 0x09 Include the ItemName and Timestamp if bit is
set.

All 0xFF Include all information in the results if bit is set.
Note that the ClientHandle property of and TsOpcItem has no meaning when used
at the server level.

The filters only affect results returned from the Read and Write methods. They are

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 47 of 81

also used as the default for new Subscriptions.

GetStatus This method returns the current status of the server.

This method has the following parameters:

Name Description

[Return Value] The current server status.
The server status is an object that has the following properties:

Name Description

VendorInfo The vendor name and product name for the
server.

ProductVersion The vendor’s software version number.

ServerState The current server state (see the server state
enumeration below).

StatusInfo More information about the current server state.

StartTime The UTC time when the server started.

CurrentTime The current UTC time at the server.

LastUpdateTime The last time the server sent a data update to
the client.

The server state enumeration has the following values:

Name Description

Unknown The server state is not known.

Running The server is running normally.

Failed The server is not functioning due to a fatal er-
ror.

NoConfig The server cannot load its configuration infor-
mation.

Suspended The server has halted all communication with
the underlying hardware.

Test The server is disconnected from the underlying
hardware.

CommFault The server cannot communicate with the under-
lying hardware.

Read The method reads the current values for a set of items.

This method has the following parameters:

Name Description

items The set of items to read.
Each item must have an ItemName
Each item may have an ItemPath, a ReqType or
MaxAge.

[Return Value] The results of the read operation for each item.
The number of item values returned must equal the number of items passed to
the method. The client uses the index in the arrays to match a item value with the
item. The server indicates errors on individual items by returning the appropriate
result code as part of the item value.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 48 of 81

It is up to the server to decide whether a cache read is appropriate for a given
item, as a result, a server may choose to read directly from the device even if the
client requests a MaxAge of Int32.MaxValue.

SetResultFilters This method sets the filters applied by the server to any item results returned to
the client.

This method has the following parameters:

Name Description

filters A bit mask indicating which fields should be
returned in any item results.

Write This method writes the value, quality and timestamp for a set of items.

This method has the following parameters:

Name Description

itemValues The set of item values to write.
Each item must have an ItemName and a Value.
Each item may have an ItemPath, a Quality and a
Timestamp.

[Return Value] The results of the write operation for each item.
The number of item results returned must equal the number of item values
passed to the method. The client uses the index in the arrays to match a item
result with the item value. The server indicates errors on individual items by re-
turning the appropriate result code as part of the item value.

The server may support writing to the quality and/or timestamp. In these cases,
the server does not write the value and returns ‘E_NO_WRITEQT’ for the item.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 49 of 81

3.1.3.2 ITsCDaSubscription Interface

This interface allows clients to control subscriptions to data items
exposed by a Data Access and/or XML-DA server.

The Framework subscription mechanism unifies the group/subscription
mechanisms from COM-DA and XML-DA. The Framework API
implements a fully asynchronous callback mechanism for XML-DA
servers via a client side in-process wrapper.

The ITsCDaSubscription interface is the base for the following sub-
classes:

Name Description

TsCDaSubscription This class is an in-process object
used to access subscriptions on
OPC Data Access and XML-DA serv-
ers.

3.1.3.2.1 Methods
The ITsDaSubscription interface has the following methods:

Name Description

AddItems This method adds items to the subscription.

This method has the following parameters:

Name Description

items The set of items to add to the subscription.
The TsCDaItem object is described in Section
3.1.4.1.
Each item must have an ItemName
Each item may have the ItemPath, ClientHan-
dle, ReqType, Active, SamplingRate or En-
ableBuffering properties specified.

[Return Value] The results of the add item operation for
each item.
In some cases, the server will not be able to
satisfy the client request for some of the
item state parameters (e.g. individual item
sampling rates might not be supported). The
ItemResult object contains the actual item.
The TtemResult object also contains a
ServerHandle which the client must use to
reference the item in other methods on the
subscription.

The index in the array is used to associate a result with a specific item.

Cancel This method cancels an asynchronous read or writes operation.

This method takes the following parameters:

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 50 of 81

Name Description

request

The object returned from the Read or Write
request.

callback

The function to invoke when the cancel
completes.

GetEnabled This method checks whether data change notifications from the server are en-
abled.

This method takes the following parameters:

Name Description

[Return Value] Whether data changed notifications should
be sent.

GetResultFilters This method returns the filters applied by the server to any item results returned
to the client.

This method is the same as the method described in Section 3.1.3.1.

The filters specified at the subscription level override filters specified at the server
level. This method takes the following parameters:

Name Description

[Return Value] A bit mask indicating which fields should be
returned in any item results.

GetState This method returns the current state of the subscription.

This method has the following parameters:

Name Description

[Return Value] Returns the current state of the subscription
as TsCDaSubscriptionState object.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 51 of 81

ModifyItems This method modifies the state of items in the subscription.

This method has the following parameters:

Name Description

masks A bit mask indicating which item state pa-
rameters are being modified.

items The new state for the items being modified.
The TsCDaItem object is described in Section
3.1.4.1.
Each item must have the ServerHandle speci-
fied.
The TsCDaStateMask enumeration contains
the bit masks used to indicate which proper-
ties of the TsCDaItem object contain valid
information.

[Return Value] The results of the modify item operation for
each item.
In some cases, the server will not be able to
satisfy the client request for some of the
item state parameters (e.g. individual item
sampling rates might not be supported). The
TsCDaItemResult object contains the actual
item state.

ModifyState This method changes the state of a subscription.

This method has the following parameters:

Name Description

masks A bit mask that indicates which elements of
the subscription state are changing.

state The new subscription state.
The TsCDaSubscriptionState object is de-
scribed in Section 3.1.4.8.
The TsCDaStateMask enumeration contains
the bit masks used to indicate which proper-
ties of the TsCDaSubscriptionState object
contain valid information.

[Return Value] The actual subscription state after applying
the changes.
In some cases, the server will not be able to
satisfy the client request (e.g the requested
update rate may not be supported). The
client must check the return value to deter-
mine the actual state of the subscription.

Read Read(TsCDaItem[] items)

This method reads the values for a set of items in the subscription.

This method has the following parameters:

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 52 of 81

Name Description

items The set of items to read.
The TsCDaItem object is described in Section
3.1.4.1.
Each item must have its ServerHandle speci-
fied.
Each item may have the ReqType and/or
MaxAge specified.

[Return Value] The results of the read operation for each
item as TsOpcItemResult Object.

Read Read(TsCDaItem[] items, object requestHandle,
 TsCDaReadCompleteHandler callback, ITsOpcRequest request)

This method begins an asynchronous read operation for a set of items.

The .NET framework allows clients to invoke any method on any object as an
asynchronous call, however, this mechanism just causes the .NET framework in-
voke synchronous call on the server on behalf of the client. However, the COM-DA
specification allows clients to ask the server to handle the asynchronous process-
ing instead. This can result in more efficient I/O for some OPC servers. For this
reason, the .NET API makes this server-side asynchronous I/O available to clients.

This method takes the following parameters:

Name Description

items The set of items to read.
The TsCDaItem object is described in Section
3.1.4.1.
Each item must have its ServerHandle speci-
fied.
Each item may have the ReqType and/or
MaxAge specified.

requestHandle A client assigned identifier for the request.
callback The function to invoke when the request

completes.
The TsCDaReadCompleteHandler delegate is
described below.

request An identifier for the request (may be used to
cancel the request).

[Return Value] An array of TsOpcItemResult containing any
errors encountered when the server validated
the items.

The TsCDaReadCompleteHandler delegate has the following parameters:
Name Description

requestHandle A client assigned identifier for the request.
results The value of each item as

TsCDaItemValueResult array.
The item results always contain the Clien-
tHandle.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 53 of 81

Refresh Refresh()

This method causes the server to send a data changed notification for all active
items.

The results of this method sent to subscribers for the DataChanged event.

This method has no parameters.

Refresh Refresh(object requestHandle, ITsOpcRequest request)

This method causes the server to send a data changed notification for all active
items.

The results of this method sent to subscribers for the DataChanged event.

This method has the following parameters:

Name Description

requestHandle A client assigned identifier for the request.
request An identifier for the request (may be used to

cancel the request).
RemoveItems This method modifies the state of items in the subscription.

This method has the following parameters:

Name Description

items The identifiers (i.e. server handles) for the
items being removed.
The TsOpcItem object is described in Section
2.7.2.1.
Each item must have the ServerHandle speci-
fied.

[Return Value] An array of TsOpcItemResult containing the
results of the remove item operation for
each item.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 54 of 81

SetEnabled This method enables or disables data change notifications from the server.

This method takes the following parameters:

Name Description

enabled Whether data changed notifications should
be sent.

SetResultFilters This method sets the filters applied by the server to any item results returned to
the client.

This method is the same as the method described in Section 3.1.3.1.

The filters specified at the subscription level override filters specified at the server
level.

Write Write(TsCDaItemValue[] items)

This method writes the value, quality and timestamp for a set of items in the sub-
scription.

This method has the following parameters:

Name Description

items The set of item values to write.
The TsCDaItemValue object is described in
Section 3.1.4.2.
Each item must have its ServerHandle and
Value specified.
Each item may have a Quality and/or a Time-
stamp specified.

[Return Value] The results of the write operation for each
item as TsOpcItemResult Object.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 55 of 81

Write Write(TsCDaItemValue[] items, object requestHandle,

 TsCDaWriteCompleteHandler callback, ITsOpcRequest request)

This method begins an asynchronous write operation for a set of items.

This method is provided in addition to the .NET framework support for asynchro-
nous I/O for the reasons discussed above.

 This method takes the following parameters:

Name Description

items The set of items to write.
The TsCDaItemValue object is described in
Section 3.1.4.2.
Each item must have its ServerHandle speci-
fied.
Each item may have the ReqType and/or
MaxAge specified.

requestHandle A client assigned identifier for the request.
callback The function to invoke when the request

completes.
The TsCDaWriteCompleteHandler delegate is
described below.

request An identifier for the request (may be used to
cancel the request).

[Return Value] An array of TsOpcItemResult containing any
errors encountered when the server validated
the items.

The TsCDaWriteCompleteHandler delegate has the following parameters:
Name Description

requestHandle A client assigned identifier for the request.
results The results of the write operation for each

item as TsOpcItemResult array.
The item results always contain the Clien-
tHandle.

3.1.3.2.2 Events
The ITsDaSubscription interface has the following events:

Name Description

DataChanged An event to receive data change updates.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 56 of 81

3.1.4 Classes

3.1.4.1 TsCDaItem class
This class describes how an item in the
server address space should be accessed.

Its properties are used to control how the
server should access the item and what
should be returned to the client. A
TsCDaItem object is used in many contexts,
only some of the properties will be
meaningful in each context. The description
of any method that has a TsCDaItem object
as a parameter must specify which prop-
erties are relevant for that method.

3.1.4.1.1 Properties
The TsCDaItem class has the following
properties:

Name Description

Active Whether the server should send data change updates.

ActiveSpecified Whether the Active state is specified.

Deadband The minimum percentage change required to trigger a data update for an item.
The range of the Deadband is from 0.0 to 100.0 Percent. Deadband will only
apply to items in the group that have a dwEUType of Analog available. If the
dwEUType is Analog, then the EU Low and EU High values for the item can be
used to calculate the range for the item. This range will be multiplied with the
Deadband to generate an exception limit. An exception is determined as follows:
Exception if (absolute value of (last cached value - current value) > (pPercent-
Deadband/100.0) * (EU High - EU Low))
The PercentDeadband can be set when AddGroup is called, allowing the same
PercentDeadband to be used for all items within that particular group. However,
with OPC DA 3.0, it is allowable to set the PercentDeadband on a per item basis.
This means that each item can potentially override the PercentDeadband set for
the group it resides within.
If the exception limit is exceeded, then the last cached value is updated with the
new value and a notification will be sent to the client’s callback (if any). The
pPercentDeadband is an optional behavior for the server. If the client does not
specify this value on a server that does support the behavior, the default value of
0 (zero) will be assumed, and all value changes will update the CACHE. Note that
the timestamp will be updated regardless of whether the cached value is up-
dated. A server which does not support deadband should return an error
(OPC_E_DEADBANDNOTSUPPORTED) if the client requests a deadband other than
0.0.
The UpdateRate for a group or the sampling rate of the item, if set, determines
time between when a value is checked to see if the exception limit has been
exceeded. The PercentDeadband is used to keep noisy signals from updating the
client unnecessarily.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 57 of 81

DeadbandSpecified Whether the Deadband is specified.

EnableBuffering Whether the server should buffer multiple data changes between data updates.
Only supported for OPC DA 3.0 and OPC XML-DA servers!

EnableBufferingSpecified Whether the Enable Buffering is specified.
Only supported for OPC DA 3.0 and OPC XML-DA servers!

MaxAge The oldest (in milliseconds) acceptable cached value when reading an item.
The server will calculate the number of milliseconds between “now” and the
timestamp on the item. If the has not been updated within the last MaxAge milli-
seconds, the item must be obtained from the underlying device. Or if the item is
not available from the cache, it will also need to be obtained from the underlying
device. A max age of <=0 is equivalent to OPC_DS_DEVICE and a max age of
Int32.MaxValue is equivalent to OPC_DS_CACHE. Without existence of a cache
the server will always read from device. In this case MaxAge is not relevant. Cli-
ents should not expect that a cache exists, if they have not activated both the
item and the containing group. Some servers maintain a global cache for all
clients. If the needed item is in this global cache, it is expected that the server
makes use of it to check the MaxAge value. Servers should not automatically
create or change the caching of an item based on a Read call with MaxAge.
(Note: Since this is an Int32 of milliseconds, the largest MaxAge value would be
approximately is 24 days).
OPC DA 2.0 :
If MaxAgeSpecified is false the framework will issue a read from cache.
If MaxAgeSpecified is true the framework will issue a read depending on
MaxAge; a MaxAge of <=0 issue a read from device otherwise a read from cache
is issued.
OPC DA 3.0 / OPC XML-DA:
MaxAge values <=0 will be given to the server with value 0.

MaxAgeSpecified Whether the Max Age is specified.

ReqType The data type to use when returning the item value.

SamplingRate How frequently the server should sample the item value.
If the item sampling rate is less than the subscription/group update rate, the
server must buffer multiple values (if supported) for the item to be included in a
single callback performed at the group update rate. Multiple values for the same
item must be in chronological order within the callback array. In other words, if
the group has an update rate of 10 seconds and there is an item within the
group that has a sampling rate of 2 seconds, then the callback will continue to
occur no faster than every 10 seconds as defined by the group. In the case where
an item has a different update rate than the group, this will indicate to the server
how often this particular item should be sampled from the underlying device as
well as how ‘fresh’ the cache will be for this particular item. If the item has a
faster sampling rate than the group update rate and the value and/or quality
change more often than the group update rate, then the server will buffer (if
supported) each occurrence and then pass this information onto the client in the
scheduled callback. The amount of data buffered is server dependent. In the case
where a server does not support buffering, then the timestamp of the collected
item will reflect the update rate of the item as opposed to the update rate of the
group.
A requested sampling rate of zero indicates that the client wants the item sam-
pled at the fastest rate supported by the server. The returned revised sampling

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 58 of 81

rate will indicate the actual sampling rate being used by the server.
If the sampling rate is slower than the group update rate, then the item will only
be collected from the underlying device at the sampling rate, as opposed to the
group update rate.
Only supported for OPC DA 3.0 and OPC XML-DA servers!

SamplingRateSpecified Whether the Sampling Rate is specified.
Only supported for OPC DA 3.0 and OPC XML-DA servers!

The TsCDaItemResult class extends the TsCDaItem class by adding the following properties:

Name Description

DiagnosticInfo Vendor specific diagnostic information (not the localized error text).

Result The error id for the result of an operation on a property.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 59 of 81

3.1.4.2 TsCDaItemValue class
This class contains the value,
quality and timestamp of an item.

This class is used to return item
values read from the server or to
specify item value to write.

3.1.4.2.1 Properties
The TsCDaItemValue class has the
following properties:

Name Description

Quality The quality of the item value.

QualitySpecified Whether the quality is specified.

Timestamp The timestamp for the item value.

TimestampSpecified Whether the timestamp is specified.

Value The item value.

The TsCDaItemValueResult class extends the TsCDaItemValue class by adding the following properties:

Name Description

DiagnosticInfo Vendor specific diagnostic information (not the localized error text).

Result The result code identifier which describes the result of a operation on an item.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 60 of 81

3.1.4.3 TsCDaBrowseElement class
This class describes an element in the server address space.

A browse element is an identifiable node in the server address space. Each
browse element may contain other browse elements and may be an item (i.e.
a value that can read from or written to). A browse element that is also an
item may have one or more TsCDaItemProperty.

3.1.4.3.1 Properties
The TsCDaBrowseElement class has the following properties:

Name Description

HasChildren Whether the element has children.

IsItem Whether the element refers to an item with data that can be accessed.

ItemName The primary identifier for the element within the server namespace.

ItemPath A secondary identifier for the element within the server namespace.

Name A descriptive name for element that is unique within a branch.

Properties The set of properties for the element.
The TsCDaItemProperty object is described in the next section.

3.1.4.4 TsCDaBrowseFilters class
This class defines a set of filters to apply when browsing

3.1.4.4.1 Properties
The TsCDaBrowseFilters object has the following properties:

Name Description

MaxElementsReturned The maximum number of elements to
return. Zero means no limit.

BrowseFilter The type of elements to return (Branch,
Item or All).

ElementNameFilter An expression used to match the name of
the element.

VendorFilter A filter which has semantics that defined
by the server.

ReturnAllProperties Whether all supported properties to return
with each element.

PropertyIDs A list of names of the properties to return
with each element.

ReturnPropertyValues Whether property values should be re-
turned with the properties.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 61 of 81

3.1.4.5 TsCDaBrowsePosition class
This class stores the state of a browse operation.

3.1.4.5.1 Properties
The TsCDaBrowsePosition object has the following properties:

Name Description

Filters The filters applied during the browse op-
eration.

ItemID The item identifier of the branch being
browsed.

MaxElementsReturned The maximum number of elements that
may be returned in a single browse.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 62 of 81

3.1.4.6 TsCDaItemProperty class
This class describes a property of an item.

3.1.4.6.1 Properties
The TsCDaItemProperty class has the following properties:

Name Description

DataType The data type of the property.

Description A short description of the property.

DiagnosticInfo Vendor specific diagnostic information
(not the localized error text).

ID The property identifier.

ItemName The primary identifier for the property if it
is directly accessible as an item.

ItemPath The secondary identifier for the property if
it is directly accessible as an item.

Result The TsOpcResult object with the result of
an operation on an property.

Value The value of the property.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 63 of 81

3.1.4.7 TsCDaServerStatus class
This class contains properties that describe the current status of an OPC Server.

3.1.4.7.1 Properties
The TsCDaServer class has the following properties:

Name Description

Bandwith The behavior of this field is server specific. A suggested use is that it returns the
approximate Percent of Bandwidth currently in use by server. If multiple links are
in use it could return the ‘worst case’ link. Note that any value over 100% indi-
cates that the aggregate combination of items and UpdateRate is too high. The
server may also return 0xFFFFFFFF if this value is unknown.

BuildNumber The update rate in ms for the Status Update Thread.

CurrentTime The current time (UTC) as known by the server.

GroupCount The total number of groups being managed by the server instance. This is mainly
for diagnostic purposes.

LastUpdateTime The time (UTC) the server sent the last data value update to this client. This value
is maintained on an instance basis.

MajorVersion The major version of the server software

MinorVersion The minor version of the server software

ProductVersion The ‘build number’ of the server software

ServerState The current status of the server. Refer to TsCDaServerState values in Section
3.1.1.3.

StartTime Time (UTC) the server was started. This is constant for the server instance and is
not reset when the server changes states. Each instance of a server should keep
the time when the process started.

StatusInfo A string that describes the current server state.

VendorInfo Vendor specific string providing additional information about the server. It is
recommended that this mention the name of the company and the type of de-
vice(s) supported.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 64 of 81

3.1.4.8 TsCDaSubscriptionState class
This class describes the state of a subscription.

3.1.4.8.1 Properties
The TsCDaSubscriptionState object has the following properties:

Name Description

Active Whether the subscription is scanning for
updates to send to the client.

ClientHandle A unique identifier for the subscription
assigned by the client.

Deadband The minimum percentage change required
to trigger a data update for an item.

KeepAlive The maximum period between updates sent
to the client.

Locale The locale used for any error messages or
results returned to the client.

Name A unique name for the subscription con-
trolled by the client.

ServerHandle A unique identifier for the subscription
assigned by the server.

TimeBias The Time Zone Bias of the subscription (in
minutes).

UpdateRate The rate at which the server checks of up-
dates to send to the client.

Active

Subscriptions and Items within Subscriptions have an Active Flag. The active state of the subscription is main-
tained separately from the active state of the items. Changing the state of the subscription does not change the
state of the items.

For the most part the Active flag is treated as ‘abstract’ within this specification. The state of these flags affects
the described behavior of various interfaces in a well defined way. The implementation details of these capabili-
ties are not dictated by this specification.

In practice it is expected that most servers will make use of this flag to optimize their use of communications
and CPU resources. Items and Subscriptions which are not active do not need to be maintained in the CACHE.

It is also expected that clients will simply set and clear active flags of subscriptions and items as a more efficient
alternative to adding and removing entire subscriptions and items. For example if an operator display is mini-
mized, its items might be set to inactive.

Refer to the Data Acquisition and Active State Behavior summary in the OPC Data Access Specification for a quick
overview of the behavior of a client and server with respect to the active state of a subscriptions and items.

OnDataChange within the client's address space can be called whenever any active data item in a active sub-
scription changes, where “change” is defined as a change in value (from the last value sent to this client), or a
change in the Quality of the value. The server can return values and quality flags for those items within the sub-
scription that changed (this will be discussed more in the OPC Data Access specification).

ClientHandle

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 65 of 81

This handle will be returned in any callback. This allows the client to identify the subscription to which the data
belongs.

It is expected that a client will assign unique value to the client handle if it intends to use any of the asynchro-
nous functions of the OPC interfaces, such as IOPCAsyncIO2, and IConnectionPoint/IOPCDataCallback interfaces.

Deadband

The range of the Deadband is from 0.0 to 100.0 Percent. Deadband will only apply to items in the subscription
that have a dwEUType of Analog available. If the dwEUType is Analog, then the EU Low and EU High values for
the item can be used to calculate the range for the item. This range will be multiplied with the Deadband to
generate an exception limit. An exception is determined as follows:

Exception if (absolute value of (last cached value - current value) > (pPercentDeadband/100.0) * (EU High - EU
Low))

The PercentDeadband can be set when AddGroup is called, allowing the same PercentDeadband to be used for
all items within that particular subscription. However, with OPC DA 3.0, it is allowable to set the PercentDead-
band on a per item basis. This means that each item can potentially override the PercentDeadband set for the
subscription it resides within.

If the exception limit is exceeded, then the last cached value is updated with the new value and a notification will
be sent to the client’s callback (if any). The pPercentDeadband is an optional behavior for the server. If the client
does not specify this value on a server that does support the behavior, the default value of 0 (zero) will be as-
sumed, and all value changes will update the CACHE. Note that the timestamp will be updated regardless of
whether the cached value is updated. A server which does not support deadband should return an error
(OPC_E_DEADBANDNOTSUPPORTED) if the client requests a deadband other than 0.0.

The UpdateRate for a subscription or the sampling rate of the item, if set, determines time between when a value
is checked to see if the exception limit has been exceeded. The PercentDeadband is used to keep noisy signals
from updating the client unnecessarily.

UpdateRate

The client can specify an ‘update rate’ for each subscription. This determines the time between when the excep-
tion limit is checked. If the exception limit is exceeded, the CACHE is updated. The server should make a ‘best
effort’ to keep the data fresh. This also affects the maximum rate at which notifications will be sent to the cli-
ent’s callback. The server should never send data to a client at a rate faster than the client requests.

IMPORTANT:

Note that this is NOT necessarily related to the server's underlying processing rate. For example if a device is
performing PID control at 0.05 second rate the an MMI requests updates at a 5 second rate via OPC, the device
would of course continue to control at a 0.05 second rate.

In addition, the server implementation would also be allowed to update the cached data available to sync or
async read at a higher rate than 5 seconds if it wished to do so. All the update rate indicates is that (a) callbacks
should happen no faster than this and (b) the cache should be updated at at least this rate.

The update rate is a ‘request’ from the client. The server should respond with an update rate that is as close as
possible to that requested.

Optionally, each individual item contained within a subscription may have a different sampling rate. The sam-
pling rate associated with individual items does not effect the callback period. In other words, if the subscription
has an update rate of 10 seconds and there is an item within the subscription that has a sampling rate of 2 sec-
onds, then the callback will continue to occur no faster than every 10 seconds as defined by the subscription. In
the case where an item has a different sampling rate than the update rate of the subscription, this will indicate

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 66 of 81

to the server how often this particular item should be read from the underlying device as well as how ‘fresh’ the
cache will be for this particular item.

If the item has a faster sampling rate than the subscription and the value and/or quality change more often than
the subscription update rate, then the server will buffer each occurrence and then pass this information onto the
client in the scheduled callback. The amount of data buffered is server dependent. See IOPCItemSamplingMgt in
the OPC Data Access Specification for more detail.

Time Zone (TimeBias)

In some cases the data may have been collected by a device operating in a time zone other than that of the cli-
ent. Then it will be useful to know what the time of the device was at the time the data was collected (e.g. to
determine what ‘shift’ was on duty at the time).

This time zone information may rarely be used and the device providing the data may not know its local time
zone, therefore it was not prudent to add this overhead to all data transactions. Instead, the subscription pro-
vides a place to store a time zone that can be set and read by the client. The default value for this is the time
zone of the host computer. The OPC Server will not make use of this value. It is there only for the convenience of
the client.

The purpose of the TimeBias is to indicate the time zone in which the data was collected (which may occasionally
be different from the time zone in which either the client or server is running). The default TimeBias for the sub-
scription (if a NULL pointer is passed to AddGroup) will be that of the system in which the subscription is created
(i.e. the server). This bias behaves like the Bias field in the Win32 TIME_ZONE_INFORMATION structure which is
to say it does NOT account for daylight savings time (DST). The TimeBias is never changed 'behind the scenes' by
the server. It is set ONLY when the subscription is created or when SetState is called. In general a Client com-
putes the data's 'local' time by TimeStamp + TimeBias + DSTBias (if any). There is an implicit assumption in this
design that the DST characteristics at the data site are the same as at the client site. If this is not the case, the
client will need to use some other means to compute the data's local time.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 67 of 81

3.2 Client API

3.2.1 Classes

3.2.1.1 TsCDaServer class
This class is a base class for an in-process object used to
access OPC Data Access and OPC XML-DA servers and is an in-
process wrapper for a remote server (i.e. a server that
implements the ITsOpcServer and ITsDaServer interface). This
class provides a mechanism to cache properties of the remote
server locally for fast access and supports serialization (which
simplifies the task of saving client configuration information).

This object contains references to unmanaged resources (e.g.
COM servers), as a result, this object must be explicitly
released by calling the Dispose method. A call to the Dispose
method is automatically done by calling the Disconnect
method.

3.2.1.1.1 Properties
The TsCDaServer class has the following properties:

Name Description

Filters The current result filters applied by the server.

StatusRefreshRate The update rate in ms for the Status Update Thread.

Subscription Returns an array of all subscriptions for the server.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 68 of 81

3.2.1.1.2 Methods
The TsCDaServer class has the following methods:

Browse This method fetches the children of a branch that meet the filter criteria.

This method has the following parameters:

Name Description

itemID The identifier of branch which is the target of
the search.
The ClientHandle and ServerHandle have no
meaning in this context.
Passing a null value searches for elements with
no parent (e.g. the top of tree).

filters The filters to use to limit the set of child ele-
ments returned.
The TsCDaBrowseFilters object is described in
section 3.1.4.4.

position An object used to continue a browse operation
A browse operation may not complete if the
number of elements exceeds the value of the
MaxElementsReturned filter. The client may
continue the browse by calling BrowseNext,
otherwise the client must call Dispose on the
TsCDaBrowsePosition object to ensure that all
resources allocated for the browse are re-
leased.
A server will typically create sub-classes of the
TsCDaBrowsePosition object that contain in-
formation used to optimize BrowseNext op-
erations. This object has no properties that are
visible to clients.

[Return Value] The set of elements found.
BrowseNext This method continues a browse operation with previously specified search crite-

ria.

This method has the following parameters:

Name Description

position An object containing the browse operation state
information.
This object must be returned from a call to
Browse. If the position is invalid for any reason
this method throws a TsOpcResultException
exception.
If there are no more elements to fetch this
method will set the TsCDaBrowsePosition to
null. Otherwise, this method will return a new
TsCDaBrowsePosition object.

[Return Value] The set of elements found.
CancelSubscription This method cancels a subscription and releases all resources allocated for it.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 69 of 81

Clients must always explicitly cancel all subscriptions that it creates.

This method has the following parameters:

Name Description

subscription The subscription to cancel.
Clone

Returns an unconnected copy of the server with the same URL.
This method calls the base class Clone method and then automatically creates all
necessary subscriptions. Note that an unconnected server object will only contain
subscriptions if they were part of the object when it was serialized. This allows the
client to restore the remote server state by calling this method after deserializing
the object.

Connect Connect(string url)

Connects the object to an OPC XML-DA Server.

This method has the following parameters:

Name Description

url Name of the XML-DA server. The usual form is
http:://xxx/yyy, e.g.
http://localhost//TsOpcXSampleServer/Service.asmx.

Connect Connect(string url, TsOpcConnectData connectData)

Establishes a physical connection to the remote server.
This method has the following parameters:

Name Description

url The network address for the remote server.
It replaces the default URL for the server if
the method succeeds.

connectData Any protocol configuration or user authenti-
cation information.

Connect Connect(string serverName, TsOpcComputerInfo computerInfo)

Connects the object to an OPC Data Access 2.0/3.0 Server.

This method has the following parameters:

Name Description

serverName Name of the server (ProgID). The usual form is xxx.yyyy.n
or xxx.yyy. The registry is checked if the specified name
is a version independent name. If so, the associated name
is used instead. Version independent server names can be
used only on the local machine.

computerInfo Information about the computer to use, like computer
name, domain, username and password. For the computer
name you can also use DNS names ("domain.com",
"server.technosoftware.ch", or "209.130.112.180"). If no
computer name is specified then the OPC Server on the
local machine is used.

CreateSubscription This method creates a new subscription.

A subscription allows a client to receive asynchronous notifications from the

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 70 of 81

server whenever an item value changes. All subscriptions that a client creates
must be destroyed with the CancelSubscription method.

The SOAP/XML protocol introduces some complexity with regards to subscriptions
because no other method requires that the server maintain state information
across method calls. The SOAP/XML stub resolves this issue by managing the
references to the ITsDaServer and ITsCDaSubscription objects on behalf of the
remote client.

 This method has the following parameters:

Name Description

state The initial state of the subscription.
The TsCDaSubscriptionState object is described
below.

[Return Value] The new subscription object.
Disconnect Disconnects from the server and releases all network resources.

This method removes all existing subscriptions before it calls the base class Dis-
connect method.

Also Dispose() is called.

GetProperties This method returns the item properties for a set of items.

This method has the following parameters:

Name Description

itemIDs A list of item identifiers.

propertyIDs A list of properties to fetch for each item.
If this parameter is null then all available prop-
erties are returned.

returnValues Whether the property values should be returned
with the properties.

[Return Value] A list of properties for each item.
The TsCDaItemPropertyCollection object is de-
scribed below.

The TsCDaItemPropertyCollection object extends ArrayList and has the following
properties/methods:

Name Description

ItemName The primary identifier for the item within the
server namespace.

ItemPath The secondary identifier for the item within the
server namespace.

Result A result code that indicates any item-level er-
rors.

operator[] Returns the TsCDaItemProperty object at the
specified index.

GetResultFilters This method returns the filters applied by the server to any item results returned
to the client.

This method has the following parameters:

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 71 of 81

Name Description

[Return Value] A bit mask indicating which fields should be
returned in any item results.

The set of masks is has the following values:

Name Value Description

ItemName 0x01 Include the ItemName in the TsOpcItem if bit is
set.

ItemPath 0x02 Include the ItemPath in the TsOpcItem if bit is
set.

ClientHandle 0x04 Include the ClientHandle in the TsOpcItem if bit
is set.

ItemTime 0x08 Include the Timestamp in the ItemValue if bit is
set.

ErrorText 0x10 Include verbose, localized error text with result if
bit is set.

DiagnosticInfo 0x20 Include additional diagnostic information with
result if bit is set.

Minimal 0x09 Include the ItemName and Timestamp if bit is
set.

All 0xFF Include all information in the results if bit is set.
Note that the ClientHandle property of and TsOpcItem has no meaning when used
at the server level.

The filters only affect results returned from the Read and Write methods. They are
also used as the default for new Subscriptions.

GetStatus This method returns the current status of the server.

This method has the following parameters:

Name Description

[Return Value] The current server status.
The server status is an object that has the following properties:

Name Description

VendorInfo The vendor name and product name for the
server.

ProductVersion The vendor’s software version number.

ServerState The current server state (see the server state
enumeration below).

StatusInfo More information about the current server state.

StartTime The UTC time when the server started.

CurrentTime The current UTC time at the server.

LastUpdateTime The last time the server sent a data update to
the client.

The server state enumeration has the following values:

Name Description

Unknown The server state is not known.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 72 of 81

Running The server is running normally.

Failed The server is not functioning due to a fatal er-
ror.

NoConfig The server cannot load its configuration infor-
mation.

Suspended The server has halted all communication with
the underlying hardware.

Test The server is disconnected from the underlying
hardware.

CommFault The server cannot communicate with the under-
lying hardware.

Read The method reads the current values for a set of items.

This method has the following parameters:

Name Description

items The set of items to read.
Each item must have an ItemName
Each item may have an ItemPath, a ReqType or
MaxAge.

[Return Value] The results of the read operation for each item.
The number of item values returned must equal the number of items passed to
the method. The client uses the index in the arrays to match a item value with the
item. The server indicates errors on individual items by returning the appropriate
result code as part of the item value.

It is up to the server to decide whether a cache read is appropriate for a given
item, as a result, a server may choose to read directly from the device even if the
client requests a MaxAge of Int32.MaxValue.

SetResultFilters This method sets the filters applied by the server to any item results returned to
the client.

This method has the following parameters:

Name Description

filters A bit mask indicating which fields should be
returned in any item results.

Write This method writes the value, quality and timestamp for a set of items.

This method has the following parameters:

Name Description

itemValues The set of item values to write.
Each item must have an ItemName and a Value.
Each item may have an ItemPath, a Quality and a
Timestamp.

[Return Value] The results of the write operation for each item.
The number of item results returned must equal the number of item values
passed to the method. The client uses the index in the arrays to match a item
result with the item value. The server indicates errors on individual items by re-
turning the appropriate result code as part of the item value.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 73 of 81

The server may support writing to the quality and/or timestamp. In these cases,
the server does not write the value and returns ‘E_NO_WRITEQT’ for the item.

3.2.1.1.3 Events
The TsCDaServer class has the following events:

Name Description

ServerStatusChanged An event to receive server status notifications.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 74 of 81

3.2.1.2 TsCDaSubscription Class

This class is an in-process object used to access subscriptions on OPC Data
Access servers.

This class may be used to access subscriptions (also called groups) on OPC
DA and XML-DA servers. Clients may create sub-classes which add additional
functionality.

This object contains references to unmanaged resources (e.g. COM servers),
as a result, this object must be explicitly released by calling the Dispose
method.

3.2.1.2.1 Properties
The TsCDaSubscription class has the following properties:

Name Description

Active Whether the subscription is active.

ClientHandle The handle assigned to the group by the
client.

Enabled Whether data callbacks are enabled.

Filters The current result filters applied by the
subscription.

Items The items belonging to the subscription.

Locale The current locale used by the subscription.

Name The name assigned to the subscription by
the client.

Server The server that the subscription is attached
to.

ServerHandle The handle assigned to the subscription by
the server.

State Returns a copy of the current subscription
state.

The properties of this object are all read only. They are intended to provide
fast access to these values without making any network calls. The client must
use the methods of the ITsCDaSubscription interface to actually change any
of these properties.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 75 of 81

3.2.1.2.2 Methods
The TsCDaSubscription interface has the following methods:

Name Description

AddItems This method adds items to the subscription.

This method has the following parameters:

Name Description

items The set of items to add to the subscription.
The TsCDaItem object is described in Section
3.1.4.1.
Each item must have an ItemName
Each item may have the ItemPath, ClientHan-
dle, ReqType, Active, SamplingRate or En-
ableBuffering properties specified.

[Return Value] The results of the add item operation for
each item.
In some cases, the server will not be able to
satisfy the client request for some of the
item state parameters (e.g. individual item
sampling rates might not be supported). The
ItemResult object contains the actual item.
The TtemResult object also contains a
ServerHandle which the client must use to
reference the item in other methods on the
subscription.

The index in the array is used to associate a result with a specific item.

Cancel This method cancels an asynchronous read or writes operation.

This method takes the following parameters:

Name Description

request

The object returned from the Read or Write
request.

callback

The function to invoke when the cancel
completes.

Clone Returns an unconnected copy of the subscription with the same items.

GetEnabled This method checks whether data change notifications from the server are en-
abled.

This method takes the following parameters:

Name Description

[Return Value] Whether data changed notifications should
be sent.

GetResultFilters This method returns the filters applied by the server to any item results returned
to the client.

This method is the same as the method described in Section 3.1.3.1.

The filters specified at the subscription level override filters specified at the server

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 76 of 81

level. This method takes the following parameters:

Name Description

[Return Value] A bit mask indicating which fields should be
returned in any item results.

GetState This method returns the current state of the subscription.

This method has the following parameters:

Name Description

[Return Value] Returns the current state of the subscription
as TsCDaSubscriptionState object.

ModifyItems This method modifies the state of items in the subscription.

This method has the following parameters:

Name Description

masks A bit mask indicating which item state pa-
rameters are being modified.

items The new state for the items being modified.
The TsCDaItem object is described in Section
3.1.4.1.
Each item must have the ServerHandle speci-
fied.
The TsCDaStateMask enumeration contains
the bit masks used to indicate which proper-
ties of the TsCDaItem object contain valid
information.

[Return Value] The results of the modify item operation for
each item.
In some cases, the server will not be able to
satisfy the client request for some of the
item state parameters (e.g. individual item
sampling rates might not be supported). The
TsCDaItemResult object contains the actual
item state.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 77 of 81

ModifyState This method changes the state of a subscription.

This method has the following parameters:

Name Description

masks A bit mask that indicates which elements of
the subscription state are changing.

state The new subscription state.
The TsCDaSubscriptionState object is de-
scribed in Section 3.1.4.8.
The TsCDaStateMask enumeration contains
the bit masks used to indicate which proper-
ties of the TsCDaSubscriptionState object
contain valid information.

[Return Value] The actual subscription state after applying
the changes.
In some cases, the server will not be able to
satisfy the client request (e.g the requested
update rate may not be supported). The
client must check the return value to deter-
mine the actual state of the subscription.

Read Read(TsCDaItem[] items)

This method reads the values for a set of items in the subscription.

This method has the following parameters:

Name Description

items The set of items to read.
The TsCDaItem object is described in Section
3.1.4.1.
Each item must have its ServerHandle speci-
fied.
Each item may have the ReqType and/or
MaxAge specified.

[Return Value] The results of the read operation for each
item as TsOpcItemResult Object.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 78 of 81

Read Read(TsCDaItem[] items, object requestHandle,

 TsCDaReadCompleteHandler callback, ITsOpcRequest request)

This method begins an asynchronous read operation for a set of items.

The .NET framework allows clients to invoke any method on any object as an
asynchronous call, however, this mechanism just causes the .NET framework in-
voke synchronous call on the server on behalf of the client. However, the COM-DA
specification allows clients to ask the server to handle the asynchronous process-
ing instead. This can result in more efficient I/O for some OPC servers. For this
reason, the .NET API makes this server-side asynchronous I/O available to clients.

This method takes the following parameters:

Name Description

items The set of items to read.
The TsCDaItem object is described in Section
3.1.4.1.
Each item must have its ServerHandle speci-
fied.
Each item may have the ReqType and/or
MaxAge specified.

requestHandle A client assigned identifier for the request.
callback The function to invoke when the request

completes.
The TsCDaReadCompleteHandler delegate is
described below.

request An identifier for the request (may be used to
cancel the request).

[Return Value] An array of TsOpcItemResult containing any
errors encountered when the server validated
the items.

The TsCDaReadCompleteHandler delegate has the following parameters:
Name Description

requestHandle A client assigned identifier for the request.
results The value of each item as

TsCDaItemValueResult array.
The item results always contain the Clien-
tHandle.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 79 of 81

Refresh Refresh()

This method causes the server to send a data changed notification for all active
items.

The results of this method sent to subscribers for the DataChanged event.

This method has no parameters.

Refresh Refresh(object requestHandle, ITsOpcRequest request)

This method causes the server to send a data changed notification for all active
items.

The results of this method sent to subscribers for the DataChanged event.

This method has the following parameters:

Name Description

requestHandle A client assigned identifier for the request.
request An identifier for the request (may be used to

cancel the request).
RemoveItems This method modifies the state of items in the subscription.

This method has the following parameters:

Name Description

items The identifiers (i.e. server handles) for the
items being removed.
The TsOpcItem object is described in Section
2.7.2.1.
Each item must have the ServerHandle speci-
fied.

[Return Value] An array of TsOpcItemResult containing the
results of the remove item operation for
each item.

SetEnabled This method enables or disables data change notifications from the server.

This method takes the following parameters:

Name Description

enabled Whether data changed notifications should
be sent.

SetResultFilters This method sets the filters applied by the server to any item results returned to
the client.

This method is the same as the method described in Section 3.1.3.1.

The filters specified at the subscription level override filters specified at the server
level.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 80 of 81

Write Write(TsCDaItemValue[] items)

This method writes the value, quality and timestamp for a set of items in the sub-
scription.

This method has the following parameters:

Name Description

items The set of item values to write.
The TsCDaItemValue object is described in
Section 3.1.4.2.
Each item must have its ServerHandle and
Value specified.
Each item may have a Quality and/or a Time-
stamp specified.

[Return Value] The results of the write operation for each
item as TsOpcItemResult Object.

Write Write(TsCDaItemValue[] items, object requestHandle,
 TsCDaWriteCompleteHandler callback, ITsOpcRequest request)

This method begins an asynchronous write operation for a set of items.

This method is provided in addition to the .NET framework support for asynchro-
nous I/O for the reasons discussed above.

 This method takes the following parameters:

Name Description

items The set of items to write.
The TsCDaItemValue object is described in
Section 3.1.4.2.
Each item must have its ServerHandle speci-
fied.
Each item may have the ReqType and/or
MaxAge specified.

requestHandle A client assigned identifier for the request.
callback The function to invoke when the request

completes.
The TsCDaWriteCompleteHandler delegate is
described below.

request An identifier for the request (may be used to
cancel the request).

[Return Value] An array of TsOpcItemResult containing any
errors encountered when the server validated
the items.

The TsCDaWriteCompleteHandler delegate has the following parameters:
Name Description

requestHandle A client assigned identifier for the request.
results The results of the write operation for each

item as TsOpcItemResult array.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

 Technosoftware AG, Farmweg 4, CH-5702 Niederlenz

 PHONE: +41 62 888 40 40, FAX: +41 62 888 40 45
 www.technosoftware.com
 E-Mail: sales@technosoftware.com

Technosoftware AG - OPC Framework .NET - Developer Guide Part I - Version 1.0 - 21/11/06 Page 81 of 81

The item results always contain the Clien-
tHandle.

3.2.1.2.3 Events
The TsCDaSubscription class has the following events:

Name Description

DataChanged An event to receive data change updates.

© Copyright 2005-2006, Technosoftware AG – www.technosoftware.com

	1 Introduction
	1.1 Why OPC?
	1.2 What is OPC?
	1.2.1 OPC Common V1.0
	1.2.2 OPC Data Access V1.0a, V2.05 and V3.0
	1.2.3 OPC Alarms&Events V1.1
	1.2.4 OPC Historical Data Access V1.1
	1.2.5 OPC Batch V2.0
	1.2.6 OPC Security V1.0
	1.2.7 OPC Data eXchange V1.0
	1.2.8 OPC XML-DA V1.0

	1.3 What is COM?
	1.4 What is OLE?
	1.5 What is DCOM?
	1.6 What is ActiveX?
	1.7 What are Web Services?
	1.8 OPC Specifications
	1.8.1 Data Access (DA)
	1.8.2 Alarms&Events (AE)
	1.8.3 Historical Data Access (HDA)
	1.8.4 Batch (BA)
	1.8.5 Security (SEC)
	1.8.6 Data eXchange (DX)
	1.8.7 XML-DA

	2 Framework Concepts
	2.1 APIs
	2.2 Naming Conventions
	2.3 Requirements
	2.3.1 Run-time Requirements
	2.3.1.1 Install the .NET Framework
	2.3.1.2 OPC Core Components
	2.3.1.3 OPC Framework .NET Components
	2.3.1.4 OPC Framework .NET Core Components

	2.3.2 Development Requirements

	2.4 Server Identification
	2.5 Server Browsing
	2.6 Server Connections
	2.6.1 General
	2.6.2 Security
	2.6.3 HTTP Proxy
	2.6.4 Error Handling
	2.6.4.1 TsOpcResult
	2.6.4.2 Exceptions

	2.6.5 Garbage Collection
	2.6.6 Item Identifiers

	2.7 Server API
	2.7.1 Interfaces
	2.7.1.1 ITsOpcServer Interface
	2.7.1.1.1 Methods
	2.7.1.1.2 Events

	2.7.2 Classes
	2.7.2.1 TsOpcItem Class
	2.7.2.1.1 Properties

	2.8 Client API
	2.8.1 Structures
	2.8.1.1 TsOpcSpecification Structure
	2.8.1.1.1 Properties

	2.8.2 Classes
	2.8.2.1 TsOpcComputerInfo Class
	2.8.2.1.1 Properties

	2.8.2.2 TsOpcServerInfo Class
	2.8.2.2.1 Properties

	2.8.2.3 TsOpcBrowse Class
	2.8.2.3.1 Methods

	2.8.2.4 TsOpcServer Class
	2.8.2.4.1 Properties
	2.8.2.4.2 Methods
	2.8.2.4.3 Events

	3 OPC DA/XML-DA Client Development
	3.1 Server API
	3.1.1 Enumerations
	3.1.1.1 TsCDaBrowseFilter enumeration
	3.1.1.1.1 Properties

	3.1.1.2 TsCDaResultFilter enumeration
	3.1.1.2.1 Properties

	3.1.1.3 TsCDaServerState enumeration
	3.1.1.3.1 Properties

	3.1.1.4 TsCDaStateMask enumeration
	3.1.1.4.1 Properties

	3.1.1.5 TsDaAccessRights enumeration
	3.1.1.5.1 Properties

	3.1.1.6 TsDaEuType enumeration
	3.1.1.6.1 Properties

	3.1.1.7 TsDaLimitBits enumeration
	3.1.1.7.1 Properties

	3.1.1.8 TsDaQualityBits enumeration
	3.1.1.8.1 Properties

	3.1.1.9 TsDaQualityMasks enumeration
	3.1.1.9.1 Properties

	3.1.2 Structures
	TsCDaPropertyID Structure
	3.1.2.1.1 Properties

	3.1.2.2 TsCDaQuality Structure
	3.1.2.2.1 Properties

	3.1.3 Interfaces
	3.1.3.1 ITsDaServer Interface
	3.1.3.1.1 Methods

	3.1.3.2 ITsCDaSubscription Interface
	3.1.3.2.1 Methods
	3.1.3.2.2 Events

	3.1.4 Classes
	3.1.4.1 TsCDaItem class
	3.1.4.1.1 Properties

	3.1.4.2 TsCDaItemValue class
	3.1.4.2.1 Properties

	3.1.4.3 TsCDaBrowseElement class
	3.1.4.3.1 Properties

	3.1.4.4 TsCDaBrowseFilters class
	3.1.4.4.1 Properties

	3.1.4.5 TsCDaBrowsePosition class
	3.1.4.5.1 Properties

	3.1.4.6 TsCDaItemProperty class
	3.1.4.6.1 Properties

	3.1.4.7 TsCDaServerStatus class
	3.1.4.7.1 Properties

	3.1.4.8 TsCDaSubscriptionState class
	3.1.4.8.1 Properties
	Active
	ClientHandle
	Deadband
	UpdateRate
	Time Zone (TimeBias)

	3.2 Client API
	3.2.1 Classes
	3.2.1.1 TsCDaServer class
	3.2.1.1.1 Properties
	3.2.1.1.2 Methods
	3.2.1.1.3 Events

	3.2.1.2 TsCDaSubscription Class
	3.2.1.2.1 Properties
	3.2.1.2.2 Methods
	3.2.1.2.3 Events

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

